A compact difference scheme for the fractional diffusion-wave equation

被引:228
作者
Du, R. [1 ]
Cao, W. R. [1 ]
Sun, Z. Z. [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Diffusion-wave system; Finite difference; Convergence; Solvability; Stability; ANOMALOUS SUBDIFFUSION EQUATION; NUMERICAL-METHOD; HEAT-EQUATION; STABILITY; SYSTEM;
D O I
10.1016/j.apm.2010.01.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article is devoted to the study of high order difference methods for the fractional diffusion-wave equation. The time fractional derivatives are described in the Caputo's sense. A compact difference scheme is presented and analyzed. It is shown that the difference scheme is unconditionally convergent and stable in L(infinity)-norm. The convergence order is O(tau(3-alpha) + h(4)). Two numerical examples are also given to demonstrate the theoretical results. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2998 / 3007
页数:10
相关论文
共 30 条
[1]   Response of a diffusion-wave system subjected to deterministic and stochastic fields [J].
Agrawal, OP .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2003, 83 (04) :265-274
[2]   Solution for a fractional diffusion-wave equation defined in a bounded domain [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :145-155
[3]  
[Anonymous], J MATH PHYS
[4]   A Central Difference Numerical Scheme for Fractional Optimal Control Problems [J].
Baleanu, Dumitru ;
Defterli, Ozlem ;
Agrawal, Om P. .
JOURNAL OF VIBRATION AND CONTROL, 2009, 15 (04) :583-597
[5]   A Fourier method for the fractional diffusion equation describing sub-diffusion [J].
Chen, Chang-Ming ;
Liu, F. ;
Turner, I. ;
Anh, V. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (02) :886-897
[6]   Analysis of fractional differential equations [J].
Diethelm, K ;
Ford, NJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (02) :229-248
[7]  
FUJITA Y, 1990, OSAKA J MATH, V27, P797
[8]  
Ginoa M., 1992, PHYSICA A, V191, P449
[9]   The accuracy and stability of an implicit solution method for the fractional diffusion equation [J].
Langlands, TAM ;
Henry, BI .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 205 (02) :719-736
[10]   Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation [J].
Liu, F. ;
Zhuang, P. ;
Anh, V. ;
Turner, I. ;
Burrage, K. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 191 (01) :12-20