Global soil moisture data derived through machine learning trained with in-situ measurements

被引:103
作者
Sungmin, O. [1 ]
Orth, Rene [1 ]
机构
[1] Max Planck Inst Biogeochem, D-07745 Jena, Germany
关键词
SMOS VALIDATION; NETWORK; TEMPERATURE; SATELLITE; OPPORTUNITIES; VARIABILITY; CALIBRATION; DYNAMICS; DROUGHT; RUNOFF;
D O I
10.1038/s41597-021-00964-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
While soil moisture information is essential for a wide range of hydrologic and climate applications, spatially-continuous soil moisture data is only available from satellite observations or model simulations. Here we present a global, long-term dataset of soil moisture derived through machine learning trained with in-situ measurements, SoMo.ml. We train a Long Short-Term Memory (LSTM) model to extrapolate daily soil moisture dynamics in space and in time, based on in-situ data collected from more than 1,000 stations across the globe. SoMo.ml provides multi-layer soil moisture data (0-10cm, 10-30cm, and 30-50cm) at 0.25 degrees spatial and daily temporal resolution over the period 2000-2019. The performance of the resulting dataset is evaluated through cross validation and inter-comparison with existing soil moisture datasets. SoMo.ml performs especially well in terms of temporal dynamics, making it particularly useful for applications requiring time-varying soil moisture, such as anomaly detection and memory analyses. SoMo.ml complements the existing suite of modelled and satellite-based datasets given its distinct derivation, to support large-scale hydrological, meteorological, and ecological analyses
引用
收藏
页数:14
相关论文
共 102 条
  • [1] Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling
    Adeyemi, Olutobi
    Grove, Ivan
    Peets, Sven
    Domun, Yuvraj
    Norton, Tomas
    [J]. SENSORS, 2018, 18 (10)
  • [2] Estimating soil moisture using remote sensing data: A machine learning approach
    Ahmad, Sajjad
    Kalra, Ajay
    Stephen, Haroon
    [J]. ADVANCES IN WATER RESOURCES, 2010, 33 (01) : 69 - 80
  • [3] Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: 2. Global statistical relationships
    Aires, F
    Prigent, C
    Rossow, WB
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D11) : 1 - 14
  • [4] Evaluation of SMOS Soil Moisture Products Over Continental US Using the SCAN/SNOTEL Network
    Al Bitar, Ahmad
    Leroux, Delphine
    Kerr, Yann H.
    Merlin, Olivier
    Richaume, Philippe
    Sahoo, Alok
    Wood, Eric F.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (05): : 1572 - 1586
  • [5] The AQUI Soil Moisture Network for Satellite Microwave Remote Sensing Validation in South-Western France
    Al-Yaari, A.
    Dayau, S.
    Chipeaux, C.
    Aluome, C.
    Kruszewski, A.
    Loustau, D.
    Wigneron, J. -P.
    [J]. REMOTE SENSING, 2018, 10 (11)
  • [6] Al-Yaari A, 2018, INT GEOSCI REMOTE SE, P3743, DOI 10.1109/IGARSS.2018.8517557
  • [7] Skill and Global Trend Analysis of Soil Moisture from Reanalyses and Microwave Remote Sensing
    Albergel, C.
    Dorigo, W.
    Reichle, R. H.
    Balsamo, G.
    de Rosnay, P.
    Munoz-Sabater, J.
    Isaksen, L.
    de Jeu, R.
    Wagner, W.
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2013, 14 (04) : 1259 - 1277
  • [8] Soil Moisture Analyses at ECMWF: Evaluation Using Global Ground-Based In Situ Observations
    Albergel, C.
    de Rosnay, P.
    Balsamo, G.
    Isaksen, L.
    Munoz-Sabater, J.
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2012, 13 (05) : 1442 - 1460
  • [9] ERA-5 and ERA-Interim driven ISBA land surface model simulations: which one performs better?
    Albergel, Clement
    Dutra, Emanuel
    Munier, Simon
    Calvet, Jean-Christophe
    Munoz-Sabater, Joaquin
    de Rosnay, Patricia
    Balsamo, Gianpaolo
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2018, 22 (06) : 3515 - 3532
  • [10] Amante C., 2009, NOAA technical memorandum NESDIS NGDC, V24, DOI [DOI 10.7289/V5C8276M, 10.7289/V5C8276M]