Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin

被引:250
作者
Zhang, Zhongjie [1 ]
Yuan, Xiaohui [2 ]
Chen, Yun [1 ]
Tian, Xiaobo [1 ]
Kind, Rainer [2 ,3 ]
Li, Xueqing [2 ]
Teng, Jiwen [1 ]
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, State Key Lab Lithospher Evolut, Beijing 100029, Peoples R China
[2] Deutsches GeoForschungsZentrum GFZ, D-14473 Potsdam, Germany
[3] Free Univ Berlin, D-1000 Berlin, Germany
关键词
east Tibetan escape flow; Sichuan Basin; receiver function imaging; mantle transition zone; MANTLE BENEATH TIBET; WENCHUAN EARTHQUAKE; RECEIVER FUNCTIONS; SOUTHERN TIBET; LITHOSPHERE; ZONE; ASIA; SUBDUCTION; CRUSTAL; DEFORMATION;
D O I
10.1016/j.epsl.2010.01.046
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
GPS displacement vectors show that the crust in east Tibet is being squeezed in an easterly direction by the northward motion of the Indian plate, and the Sichuan Basin is resisting this stream and redirecting it mainly towards Indochina. The Longmen Shan, containing the steepest rise to the high plateau anywhere in Tibet, results from the strong interaction between the east Tibetan escape flow and the rigid Yangtze block (Sichuan Basin), but the kinematics and dynamics of this interaction are still the subject of some debates. We herein present results from a dense passive-source seismic profile from the Sichuan Basin into eastern Tibet in order to study the deep structure of this collision zone. Using P and S receiver function images we observe a sudden rise of the Lithosphere-Asthenosphere Boundary (LAB) from 120 to 150 km beneath the Sichuan Basin and from 70 to 80 km beneath eastern Tibet. In contrast, the depth of the crust-mantle boundary (Moho) increases from 36 to 40 km beneath the Sichuan Basin and from 55 to 60 km beneath eastern Tibet. The 410 km discontinuity is depressed below eastern Tibet by about 30 km, although the 660 remains at nearly the same depth throughout the LMS. From these observations, we conclude that the mode of collision that occurs between Tibet and the Sichuan Basin is very different to that found between India and Tibet. In southern Tibet, we observe in essence the subduction of the Indian plate, which penetrates northwards for several hundred kilometers under central Tibet. The very thin mantle part of the lithosphere beneath eastern Tibet may indicate delamination or removal of the bottom of the lithosphere by hot asthenospheric escape flow. This process leads to the exceptionally steep topography at the eastern Tibetan margin as a result of gravitational buoyancy. This view is supported by the very unusual depression of the 410 km discontinuity beneath eastern Tibet, which could be caused by the dynamics of the sub-vertical downward asthenospheric flow. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:254 / 264
页数:11
相关论文
共 62 条
[1]   STRUCTURE AND EVOLUTION OF THE HIMALAYA-TIBET OROGENIC BELT [J].
ALLEGRE, CJ ;
COURTILLOT, V ;
TAPPONNIER, P ;
HIRN, A ;
MATTAUER, M ;
COULON, C ;
JAEGER, JJ ;
ACHACHE, J ;
SCHARER, U ;
MARCOUX, J ;
BURG, JP ;
GIRARDEAU, J ;
ARMIJO, R ;
GARIEPY, C ;
GOPEL, C ;
LI, TD ;
XIAO, XC ;
CHANG, CF ;
LI, GQ ;
LIN, BY ;
TENG, JW ;
WANG, NW ;
CHEN, GM ;
HAN, TL ;
WANG, XB ;
DEN, WM ;
SHENG, HB ;
CAO, YG ;
ZHOU, J ;
QIU, HR ;
BAO, PS ;
WANG, SC ;
WANG, BX ;
ZHOU, YX ;
RONGHUA, X .
NATURE, 1984, 307 (5946) :17-22
[2]   QUATERNARY EXTENSION IN SOUTHERN TIBET - FIELD OBSERVATIONS AND TECTONIC IMPLICATIONS [J].
ARMIJO, R ;
TAPPONNIER, P ;
MERCIER, JL ;
HAN, TL .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1986, 91 (B14) :13803-13872
[3]   Whole-mantle convection and the transition-zone water filter [J].
Bercovici, D ;
Karato, S .
NATURE, 2003, 425 (6953) :39-44
[4]   PHASE-TRANSITION CLAPEYRON SLOPES AND TRANSITION ZONE SEISMIC DISCONTINUITY TOPOGRAPHY [J].
BINA, CR ;
HELFFRICH, G .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1994, 99 (B8) :15853-15860
[5]  
Burchfiel B.C., 1995, INT GEOL REV, V37, P661, DOI [DOI 10.1080/00206819509465424, 10.1080/00206819509465424]
[6]  
Burchfiel B.C., 2008, Sichuan, People's Republic of China GSA Today, V18, P4, DOI DOI 10.1130/GSATG18A.1
[7]   Effect of water on olivine-wadsleyite phase boundary in the (Mg, Fe)2SiO4 system -: art. no. 1875 [J].
Chen, JH ;
Inoue, T ;
Yurimoto, H ;
Weidner, DJ .
GEOPHYSICAL RESEARCH LETTERS, 2002, 29 (18) :22-1
[8]  
Chen S., 1994, J GEOPHYS RES, V99, P24, DOI DOI 10.1029/94JB02132
[9]  
Clark MK, 2000, GEOLOGY, V28, P703, DOI 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO
[10]  
2