An introduction to right-angled Artin groups

被引:154
作者
Charney, Ruth [1 ]
机构
[1] Brandeis Univ, Dept Math, Waltham, MA 02454 USA
基金
美国国家科学基金会;
关键词
Artin group; CAT(0) cube complex;
D O I
10.1007/s10711-007-9148-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, right-angled Artin groups have attracted much attention in geometric group theory. They have a rich structure of subgroups and nice algorithmic properties, and they give rise to cubical complexes with a variety of applications. This survey article is meant to introduce readers to these groups and to give an overview of the relevant literature.
引用
收藏
页码:141 / 158
页数:18
相关论文
共 80 条
[1]   Configuration spaces of colored graphs [J].
Abrams, A .
GEOMETRIAE DEDICATA, 2002, 92 (01) :185-194
[2]   Finding topology in a factory: Configuration spaces [J].
Abrams, A ;
Ghrist, R .
AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (02) :140-150
[3]   Braid pictures for Artin groups [J].
Allcock, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (09) :3455-3474
[4]   The word problem for Artin groups of FC type [J].
Altobelli, JA .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 129 (01) :1-22
[5]   SUBGROUPS OF SEMIFREE GROUPS [J].
BAUDISCH, A .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1981, 38 (1-4) :19-28
[6]  
Behrstock J., DUKE MATH J
[7]   Three-dimensional FC Artin groups are CAT(0) [J].
Bell, RW .
GEOMETRIAE DEDICATA, 2005, 113 (01) :21-53
[8]   Morse theory and finiteness properties of groups [J].
Bestvina, M ;
Brady, N .
INVENTIONES MATHEMATICAE, 1997, 129 (03) :445-470
[9]   Non-positively curved aspects of Artin groups of finite type [J].
Bestvina, Mladen .
GEOMETRY & TOPOLOGY, 1999, 3 :269-302
[10]   Braid groups are linear [J].
Bigelow, SJ .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (02) :471-486