Numerical study of the Davey-Stewartson system

被引:32
作者
Besse, C
Mauser, NJ
Stimming, HP
机构
[1] Univ Toulouse 3, Lab MIP, UMR 5640, F-31062 Toulouse, France
[2] Univ Vienna, Fak Math, Wolfgang Pauli Inst, A-1090 Vienna, Austria
[3] ENS, Lyon, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2004年 / 38卷 / 06期
关键词
nonlinear Schrodinger type equation; surface wave; time-splitting spectral scheme; finite time blowup;
D O I
10.1051/m2an:2004049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with numerical analysis and simulations of the Davey-Stewartson equations which model, for example, the evolution of water surface waves. This time dependent PDE system is particularly interesting as a generalization of the 1-d integrable NLS to 2 space dimensions. We use a time splitting spectral method where we give a convergence analysis for the semi-discrete version of the scheme. Numerical results are presented for various blow-up phenomena of the equation, including blowup of defocusing, elliptic-elliptic Davey-Stewartson systems and simultaneous blowup at multiple locations in the focusing elliptic-elliptic system. Also the modeling of exact soliton type solutions for the hyperbolic-elliptic (DS2) system is studied.
引用
收藏
页码:1035 / 1054
页数:20
相关论文
共 23 条
[11]   ON THE INITIAL-VALUE PROBLEM FOR THE DAVEY-STEWARTSON SYSTEMS [J].
GHIDAGLIA, JM ;
SAUT, JC .
NONLINEARITY, 1990, 3 (02) :475-506
[12]  
GUZMANGOMEZ M, 1994, C R MATH REP ACAD SC, V16, P91
[13]  
Hardin R. H., 1973, SIAM REV, V15, DOI DOI 10.1137/1015060
[14]   Local existence in time of solutions to the elliptic-hyperbolic Davey-Stewartson system without smallness condition on the data [J].
Hayashi, N .
JOURNAL D ANALYSE MATHEMATIQUE, 1997, 73 (1) :133-164
[15]   Global existence and asymptotic behaviour in time of small solutions to the elliptic-hyperbolic Davey-Stewartson system [J].
Hayashi, N ;
Hirata, H .
NONLINEARITY, 1996, 9 (06) :1387-1409
[16]  
Hayashi N., 1995, DIFFERENTIAL INTEGRA, V8, P1657
[17]   RATE OF BLOWUP FOR SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION AT CRITICAL DIMENSION [J].
LANDMAN, MJ ;
PAPANICOLAOU, GC ;
SULEM, C ;
SULEM, PL .
PHYSICAL REVIEW A, 1988, 38 (08) :3837-3843
[18]   CONSTRUCTION OF SOLUTIONS WITH EXACTLY K-BLOW-UP POINTS FOR THE SCHRODINGER-EQUATION WITH CRITICAL NONLINEARITY [J].
MERLE, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 129 (02) :223-240
[19]   MULTIDIMENSIONAL BEHAVIOR OF AN ELECTROSTATIC ION WAVE IN A MAGNETIZED PLASMA [J].
NISHINARI, K ;
ABE, K ;
SATSUMA, J .
PHYSICS OF PLASMAS, 1994, 1 (08) :2559-2565
[20]   EXACT BLOW-UP SOLUTIONS TO THE CAUCHY-PROBLEM FOR THE DAVEY-STEWARTSON SYSTEMS [J].
OZAWA, T .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1992, 436 (1897) :345-349