Numerical study of the Davey-Stewartson system

被引:32
作者
Besse, C
Mauser, NJ
Stimming, HP
机构
[1] Univ Toulouse 3, Lab MIP, UMR 5640, F-31062 Toulouse, France
[2] Univ Vienna, Fak Math, Wolfgang Pauli Inst, A-1090 Vienna, Austria
[3] ENS, Lyon, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2004年 / 38卷 / 06期
关键词
nonlinear Schrodinger type equation; surface wave; time-splitting spectral scheme; finite time blowup;
D O I
10.1051/m2an:2004049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with numerical analysis and simulations of the Davey-Stewartson equations which model, for example, the evolution of water surface waves. This time dependent PDE system is particularly interesting as a generalization of the 1-d integrable NLS to 2 space dimensions. We use a time splitting spectral method where we give a convergence analysis for the semi-discrete version of the scheme. Numerical results are presented for various blow-up phenomena of the equation, including blowup of defocusing, elliptic-elliptic Davey-Stewartson systems and simultaneous blowup at multiple locations in the focusing elliptic-elliptic system. Also the modeling of exact soliton type solutions for the hyperbolic-elliptic (DS2) system is studied.
引用
收藏
页码:1035 / 1054
页数:20
相关论文
共 23 条
[1]  
Ablowitz M. J., 1991, LONDON MATH SOC LECT, V149
[2]  
ABLOWITZ MJ, 1981, SIAM STUD APPL MATH, V4
[3]   INVERSE SCATTERING TRANSFORM METHOD AND SOLITON-SOLUTIONS FOR DAVEY-STEWARTSON-II EQUATION [J].
ARKADIEV, VA ;
POGREBKOV, AK ;
POLIVANOV, MC .
PHYSICA D, 1989, 36 (1-2) :189-197
[4]  
Bao W., 2003, Communications in Mathematical Sciences, V1, P809, DOI DOI 10.4310/CMS.2003.V1.N4.A8
[5]   On time-splitting spectral approximations for the Schrodinger equation in the semiclassical regime [J].
Bao, WZ ;
Jin, S ;
Markowich, PA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 175 (02) :487-524
[6]   Order estimates in time of splitting methods for the nonlinear Schrodinger equation [J].
Besse, C ;
Bidégaray, B ;
Descombes, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (01) :26-40
[7]   Numerical study of elliptic-hyperbolic Davey-Stewartson system: Dromions simulation and blow-up [J].
Besse, C ;
Bruneau, CH .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1998, 8 (08) :1363-1386
[8]   Relaxation scheme for the nonlinear Schrodinger equation and Davey-Stewartson systems [J].
Besse, C .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (12) :1427-1432
[9]  
Descombes S, 2001, MATH COMPUT, V70, P1481, DOI 10.1090/S0025-5718-00-01277-1
[10]   2-DIMENSIONAL PACKETS OF CAPILLARY-GRAVITY WAVES [J].
DJORDJEVIC, VD ;
REDEKOPP, LG .
JOURNAL OF FLUID MECHANICS, 1977, 79 (MAR23) :703-714