Relaxed parameter conditions for chemotactic collapse in logistic-type parabolic-elliptic Keller-Segel systems

被引:22
作者
Black, Tobias [1 ]
Fuest, Mario [1 ]
Lankeit, Johannes [1 ,2 ]
机构
[1] Univ Paderborn, Inst Math, Warburger Str 100, D-33098 Paderborn, Germany
[2] Leibniz Univ Hannover, Inst Angew Math, Welfengarten 1, D-30167 Hannover, Germany
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2021年 / 72卷 / 03期
关键词
Chemotaxis; Finite-time blow-up; Nonlinear diffusion; Logistic source; TIME BLOW-UP; INFINITE-TIME; GLOBAL EXISTENCE; BOUNDEDNESS; FINITE; GROWTH; EQUATIONS; INVASION; MODELS; TISSUE;
D O I
10.1007/s00033-021-01524-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the finite-time blow-up in two variants of the parabolic-elliptic Keller-Segel system with nonlinear diffusion and logistic source. In n-dimensional balls, we consider {u(t)= del center dot((u+1)(m-1) del u-u del v)+lambda u-mu u(1+kappa), 0=Delta v-1/|Omega| integral(Omega) u+u (JL) and {u(t) = del center dot ((u + 1)(m-1) del u - u del v) + lambda u - mu u(1+kappa), 0 =Delta v - v + u, (PE) where. and mu are given spatially radial nonnegative functions and m, lambda > 0 are given parameters subject to further conditions. In a unified treatment, we establish a bridge between previously employed methods on blow-up detection and relatively new results on pointwise upper estimates of solutions in both of the systems above and then, making use of this newly found connection, provide extended parameter ranges for m,lambda leading to the existence of finite-time blow-up solutions in space dimensions three and above. In particular, for constant lambda, mu > 0, we find that there are initial data which lead to blow-up in (JL) if 0 <= kappa < min {1/2, n - 2/n - (m - 1)+} if m is an element of [2/n, 2n - 2/n) or 0 <= kappa < min {1/2, n - 1/n - m/2} if m is an element of(0, 2/n), and in (PE) if m is an element of [1, 2n- 2/n) and 0 <= kappa < min {(m - 1)n + 1/2(n - 1), n - 2 - (m - 1)n/n(n - 1)}.
引用
收藏
页数:23
相关论文
共 59 条
[1]   Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues [J].
Bellomo, N. ;
Bellouquid, A. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) :1663-1763
[2]  
Biler P., 1994, Colloq. Math., V67, P297
[3]   Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system [J].
Chaplain, MAJ ;
Lolas, G .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (11) :1685-1734
[4]   Finite-time blow-up in a quasilinear system of chemotaxis [J].
Cieslak, Tomasz ;
Winkler, Michael .
NONLINEARITY, 2008, 21 (05) :1057-1076
[5]   New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models [J].
Cieslak, Tomasz ;
Stinner, Christian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (06) :2080-2113
[6]   Finite-Time Blowup in a Supercritical Quasilinear Parabolic-Parabolic Keller-Segel System in Dimension 2 [J].
Cieslak, Tomasz ;
Stinner, Christian .
ACTA APPLICANDAE MATHEMATICAE, 2014, 129 (01) :135-146
[7]   Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions [J].
Cieslak, Tomasz ;
Stinner, Christian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) :5832-5851
[8]  
Friedman A., 1976, Partial Differential Equations
[9]   Blow-up profiles in quasilinear fully parabolic Keller-Segel systems [J].
Fuest, Mario .
NONLINEARITY, 2020, 33 (05) :2306-2334