Reversible Magnetic Agglomeration: A Mechanism for Thermodynamic Control over Nanoparticle Size

被引:22
作者
Bleier, Grant C. [1 ]
Watt, John [1 ]
Simocko, Chester K. [2 ]
Lavin, Judith M. [1 ]
Huber, Dale L. [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87111 USA
[2] San Jose State Univ, Dept Chem, San Jose, CA 95192 USA
关键词
magnetic agglomeration; nanoparticles; synthesis; thermodynamics; zero-valent iron; IRON NANOPARTICLES; FUNCTIONALIZATION; DECOMPOSITION; NANOCRYSTALS; REMEDIATION;
D O I
10.1002/anie.201800959
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a method for the synthesis and precise size control of magnetic nanoparticles in a reversible magnetic agglomeration mechanism. In this approach, nanoparticles nucleate and grow until a critical susceptibility is reached, in which magnetic attraction overcomes dispersive forces, leading to agglomeration and precipitation. This phase change in the system arrests nanoparticle growth and gives true thermodynamic control over the size of nanoparticles. We then show that increasing the alkyl chain length of the surfactant, and hence increasing steric stabilization, allows nanoparticles to grow to larger sizes before agglomeration occurs. Therefore, simply by choosing the correct surfactant, the size and magnetic properties of iron nanoparticles can be tailored for a particular application. With the continuous addition of the precursor solution, we can repeat the steps of nucleation, growth, and magnetic agglomeration indefinitely, making the approach suitable for large scale syntheses.
引用
收藏
页码:7678 / 7681
页数:4
相关论文
共 26 条
[1]   Magnetic Nanoparticles of Iron Carbide, Iron Oxide, Iron@Iron Oxide, and Metal Iron Synthesized by Laser Ablation in Organic Solvents [J].
Amendola, Vincenzo ;
Riello, Pietro ;
Meneghetti, Moreno .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (12) :5140-5146
[2]  
BAEV AK, 1975, ZH FIZ KHIM+, V49, P2575
[3]   Synergistically Integrated Nanoparticles as Multimodal Probes for Nanobiotechnology [J].
Cheon, Jinwoo ;
Lee, Jae-Hyun .
ACCOUNTS OF CHEMICAL RESEARCH, 2008, 41 (12) :1630-1640
[4]  
Cheong S., 2011, Angewandte Chemie, V123, P4292
[5]   Simple Synthesis and Functionalization of Iron Nanoparticles for Magnetic Resonance Imaging [J].
Cheong, Soshan ;
Ferguson, Peter ;
Feindel, Kirk W. ;
Hermans, Ian F. ;
Callaghan, Paul T. ;
Meyer, Claire ;
Slocombe, Angela ;
Su, Chia-Hao ;
Cheng, Fong-Yu ;
Yeh, Chen-Sheng ;
Ingham, Bridget ;
Toney, Michael F. ;
Tilley, Richard D. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (18) :4206-4209
[6]   Synthesis, properties, and applications of iron nanoparticles [J].
Huber, DL .
SMALL, 2005, 1 (05) :482-501
[7]   Synthesis of highly magnetic iron nanoparticles suitable for field structuring using a β-diketone surfactant [J].
Huber, DL ;
Venturini, EL ;
Martin, JE ;
Provencio, PP ;
Patel, RJ .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 278 (03) :311-316
[8]   Tuning the Magnetic Properties of Nanoparticles [J].
Kolhatkar, Arati G. ;
Jamison, Andrew C. ;
Litvinov, Dmitri ;
Willson, Richard C. ;
Lee, T. Randall .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (08) :15977-16009
[9]   Stable Single-Crystalline Body Centered Cubic Fe Nanoparticles [J].
Lacroix, Lise-Marie ;
Huls, Natalie Frey ;
Ho, Don ;
Sun, Xiaolian ;
Cheng, Kai ;
Sun, Shouheng .
NANO LETTERS, 2011, 11 (04) :1641-1645
[10]   THEORY, PRODUCTION AND MECHANISM OF FORMATION OF MONODISPERSED HYDROSOLS [J].
LAMER, VK ;
DINEGAR, RH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1950, 72 (11) :4847-4854