SC6D: Symmetry-agnostic and Correspondence-free 6D Object Pose Estimation

被引:10
作者
Cai, Dingding [1 ]
Heikkila, Janne [2 ]
Rahtu, Esa [1 ]
机构
[1] Tampere Univ, Tampere, Finland
[2] Univ Oulu, Oulu, Finland
来源
2022 INTERNATIONAL CONFERENCE ON 3D VISION, 3DV | 2022年
基金
芬兰科学院;
关键词
D O I
10.1109/3DV57658.2022.00065
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an efficient symmetry-agnostic and correspondence-free framework, referred to as SC6D, for 6D object pose estimation from a single monocular RGB image. SC6D requires neither the 3D CAD model of the object nor any prior knowledge of the symmetries. The pose estimation is decomposed into three sub-tasks: a) object 3D rotation representation learning and matching; b) estimation of the 2D location of the object center; and c) scaleinvariant distance estimation (the translation along the zaxis) via classification. SC6D is evaluated on three benchmark datasets, T-LESS, YCB-V, and ITODD, and results in state-of-the-art performance on the T-LESS dataset. Moreover, SC6D is computationally much more efficient than the previous state-of-the-art method SurfEmb. The implementation and pre-trained models are publicly available at https://github.com/dingdingcai/SC6D-pose.
引用
收藏
页码:536 / 546
页数:11
相关论文
共 55 条
[41]   HybridPose: 6D Object Pose Estimation under Hybrid Representations [J].
Song, Chen ;
Song, Jiaru ;
Huang, Qixing .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :428-437
[42]  
Su Y., 2022, arXiv
[43]   Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection [J].
Sundermeyer, Martin ;
Marton, Zoltan-Csaba ;
Durner, Maximilian ;
Triebel, Rudolph .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (03) :714-729
[44]   Implicit 3D Orientation Learning for 6D Object Detection from RGB Images [J].
Sundermeyer, Martin ;
Marton, Zoltan-Csaba ;
Durner, Maximilian ;
Brucker, Manuel ;
Triebel, Rudolph .
COMPUTER VISION - ECCV 2018, PT VI, 2018, 11210 :712-729
[45]  
Sundermeyer Martin, 2020, CVPR, P4323
[46]   Real-Time Seamless Single Shot 6D Object Pose Prediction [J].
Tekin, Bugra ;
Sinha, Sudipta N. ;
Fua, Pascal .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :292-301
[47]  
Tremblay J, 2018, Arxiv, DOI arXiv:1809.10790
[48]   DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion [J].
Wang, Chen ;
Xu, Danfei ;
Zhu, Yuke ;
Martin-Martin, Roberto ;
Lu, Cewu ;
Li Fei-Fei ;
Savarese, Silvio .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3338-3347
[49]   GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation [J].
Wang, Gu ;
Manhardt, Fabian ;
Tombari, Federico ;
Ji, Xiangyang .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :16606-16616
[50]  
Wohlhart P, 2015, PROC CVPR IEEE, P3109, DOI 10.1109/CVPR.2015.7298930