SC6D: Symmetry-agnostic and Correspondence-free 6D Object Pose Estimation

被引:10
作者
Cai, Dingding [1 ]
Heikkila, Janne [2 ]
Rahtu, Esa [1 ]
机构
[1] Tampere Univ, Tampere, Finland
[2] Univ Oulu, Oulu, Finland
来源
2022 INTERNATIONAL CONFERENCE ON 3D VISION, 3DV | 2022年
基金
芬兰科学院;
关键词
D O I
10.1109/3DV57658.2022.00065
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an efficient symmetry-agnostic and correspondence-free framework, referred to as SC6D, for 6D object pose estimation from a single monocular RGB image. SC6D requires neither the 3D CAD model of the object nor any prior knowledge of the symmetries. The pose estimation is decomposed into three sub-tasks: a) object 3D rotation representation learning and matching; b) estimation of the 2D location of the object center; and c) scaleinvariant distance estimation (the translation along the zaxis) via classification. SC6D is evaluated on three benchmark datasets, T-LESS, YCB-V, and ITODD, and results in state-of-the-art performance on the T-LESS dataset. Moreover, SC6D is computationally much more efficient than the previous state-of-the-art method SurfEmb. The implementation and pre-trained models are publicly available at https://github.com/dingdingcai/SC6D-pose.
引用
收藏
页码:536 / 546
页数:11
相关论文
共 55 条
[1]   LEAST-SQUARES FITTING OF 2 3-D POINT SETS [J].
ARUN, KS ;
HUANG, TS ;
BLOSTEIN, SD .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1987, 9 (05) :699-700
[2]   Graph-Cut RANSAC [J].
Barath, Daniel ;
Matas, Jiri .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6733-6741
[3]   SURF: Speeded up robust features [J].
Bay, Herbert ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION - ECCV 2006 , PT 1, PROCEEDINGS, 2006, 3951 :404-417
[4]  
Brachmann E, 2014, LECT NOTES COMPUT SC, V8690, P536, DOI 10.1007/978-3-319-10605-2_35
[5]   OVE6D: Object Viewpoint Encoding for Depth-based 6D Object Pose Estimation [J].
Cai, Dingding ;
Heikkia, Janne ;
Rahtu, Esa .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :6793-6803
[6]   The MOPED framework: Object recognition and pose estimation for manipulation [J].
Collet, Alvaro ;
Martinez, Manuel ;
Srinivasa, Siddhartha S. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2011, 30 (10) :1284-1306
[7]   SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation [J].
Di, Yan ;
Manhardt, Fabian ;
Wang, Gu ;
Ji, Xiangyang ;
Navab, Nassir ;
Tombari, Federico .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :12376-12385
[8]   Introducing MVTec ITODD - A Dataset for 3D Object Recognition in Industry [J].
Drost, Bertram ;
Ulrich, Markus ;
Bergmann, Paul ;
Haertinger, Philipp ;
Steger, Carsten .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, :2200-2208
[9]   RANDOM SAMPLE CONSENSUS - A PARADIGM FOR MODEL-FITTING WITH APPLICATIONS TO IMAGE-ANALYSIS AND AUTOMATED CARTOGRAPHY [J].
FISCHLER, MA ;
BOLLES, RC .
COMMUNICATIONS OF THE ACM, 1981, 24 (06) :381-395
[10]   Deep Ordinal Regression Network for Monocular Depth Estimation [J].
Fu, Huan ;
Gong, Mingming ;
Wang, Chaohui ;
Batmanghelich, Kayhan ;
Tao, Dacheng .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2002-2011