Kinetic Study of Hydrogen Evolution Reaction over Strained MoS2 with Sulfur Vacancies Using Scanning Electrochemical Microscopy

被引:267
作者
Li, Hong [1 ]
Du, Minshu [5 ]
Mleczko, Michal J. [2 ]
Koh, Ai Leen [3 ]
Nishi, Yoshio [2 ]
Pop, Eric [2 ,4 ]
Bard, Alien J. [5 ]
Zheng, Xiaolin [1 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Stanford Nano Shared Facil, Stanford, CA 94305 USA
[4] Stanford Univ, Precourt Inst Energy, Stanford, CA 94305 USA
[5] Univ Texas Austin, Dept Chem, Ctr Electrochem, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
GENERATION/TIP COLLECTION MODE; ELECTRODE-REACTION MECHANISM; ACTIVE EDGE SITES; PALLADIUM NANOPARTICLES; FEEDBACK MODE; OXIDATION; ELECTROCATALYSIS; FILMS;
D O I
10.1021/jacs.6b01377
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molybdenum disulfide (MoS2), with its active edge sites, is a proposed alternative to platinum for catalyzing the hydrogen evolution reaction (HER). Recently, the inert basal of was activated and optimized plane MoS2 successfully with excellent intrinsic HER activity by creating and further straining sulfur (S) vacancies. Nevertheless, little is known about the HER kinetics of those S vacancies and the additional effects from elastic tensile strain. Herein, scanning electrochemical microscopy was used to determine the HER kinetic data for both unstrained S vacancies (formal potential E-v(0) = -0.53 V-Ag/AgCl, electron-transfer coefficient alpha(v) = 0.4, electron-transfer rate constant k(v)(0) = 2.3 X 10(-4) cm/s) and strained S vacancies (E-sv(0) = -0.53 V-Ag/AgCl, alpha(sv) = 0.4, k(sv)(0) = 1.0 X 10(-3) cm/s
引用
收藏
页码:5123 / 5129
页数:7
相关论文
共 36 条
[1]   Scanning electrochemical microscopic study of hydrogen oxidation and evolution at electrochemically deposited Pt nanoparticulate electrode incorporated in polyaniline [J].
Ahmed, S ;
Shan, J ;
Petrik, L ;
Linkov, VA .
ANALYTICAL SCIENCES, 2004, 20 (09) :1283-1287
[2]   Dissociation of H2O at the vacancies of single-layer MoS2 [J].
Ataca, C. ;
Ciraci, S. .
PHYSICAL REVIEW B, 2012, 85 (19)
[3]   SCANNING ELECTROCHEMICAL MICROSCOPY - INTRODUCTION AND PRINCIPLES [J].
BARD, AJ ;
FAN, FRF ;
KWAK, J ;
LEV, O .
ANALYTICAL CHEMISTRY, 1989, 61 (02) :132-138
[4]   SCANNING ELECTROCHEMICAL MICROSCOPY - A NEW TECHNIQUE FOR THE CHARACTERIZATION AND MODIFICATION OF SURFACES [J].
BARD, AJ ;
DENUAULT, G ;
LEE, C ;
MANDLER, D ;
WIPF, DO .
ACCOUNTS OF CHEMICAL RESEARCH, 1990, 23 (11) :357-363
[5]   Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials [J].
Benck, Jesse D. ;
Hellstern, Thomas R. ;
Kibsgaard, Jakob ;
Chakthranont, Pongkarn ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2014, 4 (11) :3957-3971
[6]   Advances on scanning electrochemical microscopy (SECM) for energy [J].
Bertoncello, Paolo .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (11) :1620-1633
[7]   Analysis of the hydrogen electrode reaction mechanism in thin-layer cells. 2. Study of hydrogen evolution on microelectrodes by scanning electrochemical microscopy [J].
Bonazza, Horacio L. ;
Vega, Leonardo D. ;
Fernandez, Jose L. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2014, 713 :9-16
[8]   Core-shell MoO3-MoS2 Nanowires for Hydrogen Evolution: A Functional Design for Electrocatalytic Materials [J].
Chen, Zhebo ;
Cummins, Dustin ;
Reinecke, Benjamin N. ;
Clark, Ezra ;
Sunkara, Mahendra K. ;
Jaramillo, Thomas F. .
NANO LETTERS, 2011, 11 (10) :4168-4175
[9]   Analysis of the hydrogen electrode reaction mechanism in thin-layer cells 1 Theory [J].
Fernandez, Jose L. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2010, 650 (01) :90-97
[10]   Biornimetic hydrogen evolution:: MoS2 nanoparticles as catalyst for hydrogen evolution [J].
Hinnemann, B ;
Moses, PG ;
Bonde, J ;
Jorgensen, KP ;
Nielsen, JH ;
Horch, S ;
Chorkendorff, I ;
Norskov, JK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (15) :5308-5309