A characterization of weighted Bergman-Privalov spaces on the unit ball of Cn

被引:0
作者
Matsugu, Y [1 ]
Miyazawa, J [1 ]
Ueki, SI [1 ]
机构
[1] Shinshu Univ, Fac Sci, Dept Math Sci, Matsumoto, Nagano 3908621, Japan
关键词
Bergman-Privalov spaces; Privalov spaces; Bergman spaces; Riesz measure; Hardy-Orlicz spaces;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let B denote the unit ball in C-n, and nu the normalized Lebesgue measure on B. For alpha > -1, define dnu(alpha)(z) = c(alpha)(1 - \z\(2))(alpha)dnu(z), z is an element of B. Here c(alpha) is a positive constant such that nu(alpha)(B) = 1. Let H(B) denote the space of all holomorphic functions in B. For p greater than or equal to 1, define the Bergman-Privalov space (AN)(p)(nu(alpha)) by (AN)(p)(nu(alpha)) = {f is an element of H(B) : integral(B) {log(1 + \1\}(p) dnu(alpha) < infinity}. In this paper we prove that a function f is an element of H(B) is in (AN)(p)(nu(alpha)) if and only if (1 + \f\)(-2){log(1 + \f\)}(p-2)\delf\(2) is an element of L-1(nu(alpha)) in the case 1 < p < infinity, or (1 + \f\)(-2)\f\(-1)\delf\(2) is an element of L-1(nu(alpha)) in the case p = 1, where delf is the gradient of f with respect to the Bergman metric on B. This is an analogous result to the characterization of the Hardy spaces by M. Stoll [18] and that of the Bergman spaces by C. Ouyang-W. Yang-R. Zhao [13].
引用
收藏
页码:783 / 800
页数:18
相关论文
共 21 条
  • [1] [Anonymous], 1989, DISSERTATIONES MATH
  • [2] Composition operators between Nevanlinna-type spaces
    Choa, JS
    Kim, HO
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 257 (02) : 378 - 402
  • [3] CHOA JS, 1991, COMPLEX VARIABLES TH, V17, P15
  • [4] CHOA JS, 1996, NIHONKAI MATH J, V7, P29
  • [5] CHOE BR, 1992, COMPLEX VARIABLES TH, V20, P53
  • [6] DJRBASHIAN AE, 1988, TOPICS THEORY A SPAC
  • [7] Isometries of some F-algebras of holomorphic functions
    Iida, Y
    Mochizuki, N
    [J]. ARCHIV DER MATHEMATIK, 1998, 71 (04) : 297 - 300
  • [8] Isometries of weighted Bergman-Privalov spaces on the unit ball of Cn
    Matsugu, Y
    Ueki, S
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2002, 54 (02) : 341 - 347
  • [9] MATSUGU Y, IN PRESS J AUSTRAL M
  • [10] MATSUGU Y, 2000, FAR E J MATH SCI, V2, P633