Measurement and limitations of optical orbital angular momentum through corrected atmospheric turbulence

被引:14
作者
Neo, Richard [1 ]
Goodwin, Michael [2 ]
Zheng, Jessica [2 ]
Lawrence, Jon [2 ,3 ]
Leon-Saval, Sergio [1 ]
Bland-Hawthorn, Joss [1 ]
Molina-Terriza, Gabriel [3 ,4 ]
机构
[1] Univ Sydney, Sydney Astrophoton Instrumentat Lab, Sydney, NSW 2006, Australia
[2] Australian Astron Observ, POB 296, Epping, NSW 2109, Australia
[3] Macquarie Univ, Dept Phys & Astron, N Ryde, NSW 2109, Australia
[4] Macquarie Univ, ARC Ctr Excellence Engn Quantum Syst EQuS, N Ryde, NSW 2109, Australia
来源
OPTICS EXPRESS | 2016年 / 24卷 / 03期
基金
澳大利亚研究理事会;
关键词
ADAPTIVE-OPTICS; COMPENSATION; BEAMS; LINK; ABERRATIONS;
D O I
10.1364/OE.24.002919
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In recent years, there have been a series of proposals to exploit the orbital angular momentum (OAM) of light for astronomical applications. The OAM of light potentially represents a new way in which to probe the universe. The study of this property of light entails the development of new instrumentation and problems which must be addressed. One of the key issues is whether we can overcome the loss of the information carried by OAM due to atmospheric turbulence. We experimentally analyze the effect of atmospheric turbulence on the OAM content of a signal over a range of realistic turbulence strengths typical for astronomical observations. With an adaptive optics system we are able to recover up to 89% power in an initial non-zero OAM mode (l = 1) at low turbulence strengths (0.30" FWHM seeing). However, for poorer seeing conditions (1.1" FWHM seeing), the amount of power recovered is significantly lower (5%), showing that for the terrestrial detection of astronomical OAM, a careful design of the adaptive optics system is needed. (C) 2016 Optical Society of America
引用
收藏
页码:2919 / 2930
页数:12
相关论文
共 22 条
  • [1] Efficient Sorting of Orbital Angular Momentum States of Light
    Berkhout, Gregorius C. G.
    Lavery, Martin P. J.
    Courtial, Johannes
    Beijersbergen, Marco W.
    Padgett, Miles J.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (15)
  • [2] Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects
    Berkhout, Gregorius C. G.
    Beijersbergen, Marco W.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (10)
  • [3] Ebstein S., 2002, INT S OPT SCI TECHN, P150
  • [4] Recent advances in astronomical adaptive optics
    Hart, Michael
    [J]. APPLIED OPTICS, 2010, 49 (16) : D17 - D29
  • [5] Photon orbital angular momentum in astrophysics
    Harwit, M
    [J]. ASTROPHYSICAL JOURNAL, 2003, 597 (02) : 1266 - 1270
  • [6] GENERATION OF OPTICAL-PHASE SINGULARITIES BY COMPUTER-GENERATED HOLOGRAMS
    HECKENBERG, NR
    MCDUFF, R
    SMITH, CP
    WHITE, AG
    [J]. OPTICS LETTERS, 1992, 17 (03) : 221 - 223
  • [7] Spatial coherence and the orbital angular momentum of light in astronomy
    Hetharia, D.
    van Exter, M. P.
    Loffler, W.
    [J]. PHYSICAL REVIEW A, 2014, 90 (06):
  • [8] Detection of a Spinning Object Using Light's Orbital Angular Momentum
    Lavery, Martin P. J.
    Speirits, Fiona C.
    Barnett, Stephen M.
    Padgett, Miles J.
    [J]. SCIENCE, 2013, 341 (6145) : 537 - 540
  • [10] Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding
    Malik, Mehul
    O'Sullivan, Malcolm
    Rodenburg, Brandon
    Mirhosseini, Mohammad
    Leach, Jonathan
    Lavery, Martin P. J.
    Padgett, Miles J.
    Boyd, Robert W.
    [J]. OPTICS EXPRESS, 2012, 20 (12): : 13195 - 13200