Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage

被引:123
作者
Yue, Luchao [1 ,2 ]
Ma, Chaoqun [3 ]
Yan, Shihai [3 ]
Wu, Zhenguo [1 ]
Zhao, Wenxi [2 ]
Liu, Qian [2 ]
Luo, Yonglan [2 ]
Zhong, Benhe [1 ]
Zhang, Fang [4 ]
Liu, Yang [5 ]
Alshehri, Abdulmohsen Ali [6 ]
Alzahrani, Khalid Ahmed [6 ]
Guo, Xiaodong [1 ]
Sun, Xuping [2 ]
机构
[1] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Peoples R China
[2] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Peoples R China
[3] Qingdao Agr Univ, Coll Chem & Pharmaceut Sci, Qingdao 266109, Peoples R China
[4] Natl Engn Res Ctr Nanotechnol, 28 East Jiang Chuan Rd, Shanghai 200241, Peoples R China
[5] Henan Normal Univ, Sch Mat Sci & Engn, Xinxiang 453007, Henan, Peoples R China
[6] King Abdulaziz Univ, Fac Sci, Chem Dept, POB 80203, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
NiMoO4; phosphorus doping; anode; lithium ion batteries; HIGH-PERFORMANCE LITHIUM; OXYGEN VACANCIES; ION BATTERIES; CARBON; NANOSHEETS; NANOWIRE; CO3O4; NANOFIBERS; EVOLUTION; ARRAYS;
D O I
10.1007/s12274-021-3455-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Heteroatom doping is one of the most promising strategies toward regulating intrinsically sluggish electronic conductivity and kinetic reaction of transition metal oxides for enhancing their lithium storage. Herein, we designed phosphorus-doped NiMoO4 nanorods (P-NiMoO4) by using a facile hydrothermal method and subsequent low-temperature phosphorization treatment. Phosphorus doping played an indispensable role in significantly improving electronic conductivity and the Li+ diffusion kinetics of NiMoO4 materials. Experimental investigation and density functional theory calculation demonstrated that phosphorus doping can expand the interplanar spacing and alter electronic structures of NiMoO4 nanorods. Meanwhile, the introduced phosphorus dopant can generate some oxygen vacancies on the surface of NiMoO4, which can accelerate Li+ diffusion kinetics and provide more active site for lithium storage. As excepted, P-NiMoO4 electrode delivered a high specific capacity (1,130 mAh.g(-1) at 100 mA.g(-1) after 100 cycles), outstanding cycling durability (945 mAh.g(-1) at 500 mA.g(-1) over 200 cycles), and impressive rate performance (640 mAh.g(-1) at 2,000 mA.g(-1)) for lithium ion batteries (LIBs). This work could provide a potential strategy for improving intrinsic conductivity of transition metal oxides as high-performance anodes for LIBs.
引用
收藏
页码:186 / 194
页数:9
相关论文
共 55 条
  • [11] General Synthesis of Multishell Mixed-Metal Oxyphosphide Particles with Enhanced Electrocatalytic Activity in the Oxygen Evolution Reaction
    Guan, Bu Yuan
    Yu, Le
    Lou, Xiong Wen
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (09) : 2386 - 2389
  • [12] Nanocrystalline NiMoO4 with an ordered mesoporous morphology as potential material for rechargeable thin film lithium batteries
    Haetge, Jan
    Djerdj, Igor
    Brezesinski, Torsten
    [J]. CHEMICAL COMMUNICATIONS, 2012, 48 (53) : 6726 - 6728
  • [13] 3D interconnected porous NiMoO4 nanoplate arrays on Ni foam as high-performance binder-free electrode for supercapacitors
    Huang, Liang
    Xiang, Jingwei
    Zhang, Wei
    Chen, Chaoji
    Xu, Henghui
    Huang, Yunhui
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (44) : 22081 - 22087
  • [14] Facile fabrication of porous NiMoO4@C nanowire as high performance anode material for lithium ion batteries
    Jiang, Gaoxue
    Li, Li
    Xie, Zhengjun
    Cao, Bingqiang
    [J]. CERAMICS INTERNATIONAL, 2019, 45 (15) : 18462 - 18470
  • [15] Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
    Kresse, G
    Furthmuller, J
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 1996, 6 (01) : 15 - 50
  • [16] Heterostructure SnSe2/ZnSe@PDA Nanobox for Stable and Highly Efficient Sodium-Ion Storage
    Liu, Pei
    Han, Jun
    Zhu, Kunjie
    Dong, Zihao
    Jiao, Lifang
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (24)
  • [17] Controllable sulfuration engineered NiO nanosheets with enhanced capacitance for high rate supercapacitors
    Liu, Shude
    Lee, Su Chan
    Patil, Umakant M.
    Ray, Chaiti
    Sankar, K. Vijaya
    Zhang, Kan
    Kundu, Aniruddha
    Kang, Shinill
    Park, Jong Hyeok
    Jun, Seong Chan
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (09) : 4543 - 4549
  • [18] Recent progress in phosphorus based anode materials for lithium/sodium ion batteries
    Liu, Weili
    Zhi, Hanqian
    Yu, Xuebin
    [J]. ENERGY STORAGE MATERIALS, 2019, 16 : 290 - 322
  • [19] Ultrafine Sn4P3 nanocrystals from chloride reduction on mechanically activated Na surface for sodium/lithium ion batteries
    Liu, Zhiliang
    Wang, Xiangxi
    Wu, Zhuoyan
    Yang, Sungjin
    Yang, Shaolei
    Chen, Shunpeng
    Wu, Xinteng
    Chang, Xinghua
    Yang, Piaoping
    Zheng, Jie
    Li, Xingguo
    [J]. NANO RESEARCH, 2020, 13 (11) : 3157 - 3164
  • [20] MoO3-x Nanowire Arrays As Stable and High-Capacity Anodes for Lithium Ion Batteries
    Meduri, Praveen
    Clark, Ezra
    Kim, Jeong H.
    Dayalan, Ethirajulu
    Sumanasekera, Gamini U.
    Sunkara, Mahendra K.
    [J]. NANO LETTERS, 2012, 12 (04) : 1784 - 1788