Probability Axioms and Set Theory Paradoxes

被引:0
作者
Herman, Ari [1 ]
Caughman, John [1 ]
机构
[1] Portland State Univ, Fariborz Maseeh Dept Math & Stat, Portland, OR 97201 USA
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 02期
关键词
set theory; probability; axiom of choice;
D O I
10.3390/sym13020179
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we show that Zermelo-Fraenkel set theory with Choice (ZFC) conflicts with basic intuitions about randomness. Our background assumptions are the Zermelo-Fraenekel axioms without Choice (ZF) together with a fragment of Kolmogorov's probability theory. Using these minimal assumptions, we prove that a weak form of Choice contradicts two common sense assumptions about probability-both based on simple notions of symmetry and independence.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 11 条
[1]  
[Anonymous], 1965, AM MATH MON
[2]  
Banach S., 1924, Fundam. Math, V6, P244, DOI [10.4064/fm-6-1-244-277, DOI 10.4064/FM-6-1-244-277]
[3]  
Chung K. L., 2001, COURSE PROBABILITY T
[4]   AXIOMS OF SYMMETRY - THROWING DARTS AT THE REAL NUMBER LINE [J].
FREILING, C .
JOURNAL OF SYMBOLIC LOGIC, 1986, 51 (01) :190-200
[5]   An Introduction to Infinite Hat Problems [J].
Hardin, Christopher S. ;
Taylor, Alan D. .
MATHEMATICAL INTELLIGENCER, 2008, 30 (04) :20-25
[6]   Hyperreal-Valued Probability Measures Approximating a Real-Valued Measure [J].
Hofweber, Thomas ;
Schindler, Ralf .
NOTRE DAME JOURNAL OF FORMAL LOGIC, 2016, 57 (03) :369-374
[7]  
Jech T, 2003, SET THEORY 3 MILLENN
[8]   BELIEVING THE AXIOMS .1. [J].
MADDY, P .
JOURNAL OF SYMBOLIC LOGIC, 1988, 53 (02) :481-511
[9]  
Matiyasevich Yu. V., 1970, Dokl, V191, P354
[10]   INDEPENDENCE, RANDOMNESS AND THE AXIOM OF CHOICE [J].
VANLAMBALGEN, M .
JOURNAL OF SYMBOLIC LOGIC, 1992, 57 (04) :1274-1304