Quantum computation using decoherence-free states of the physical operator algebra

被引:46
作者
De Filippo, S
机构
[1] Univ Salerno, Dipartimento Sci Fis, I-84081 Baronissi, SA, Italy
[2] INFM, Unita Salerno, I-84081 Baronissi, Italy
来源
PHYSICAL REVIEW A | 2000年 / 62卷 / 05期
关键词
D O I
10.1103/PhysRevA.62.052307
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The states of the physical algebra, namely the algebra generated by the operators involved in encoding and processing qubits, are considered instead of those of the whole-system algebra. If the physical algebra commutes with the interaction Hamiltonian, and the system Hamiltonian is the sum of arbitrary terms either commuting with or belonging to the physical algebra, then its states are decoherence free. One of the examples considered shows that, for a uniform collective coupling to the environment, the smallest number of physical qubits encoding a decoherence-free logical qubit is reduced from four to three.
引用
收藏
页码:052307 / 052301
页数:6
相关论文
共 15 条
[1]   Universal fault-tolerant quantum computation on decoherence-free subspaces [J].
Bacon, D ;
Kempe, J ;
Lidar, DA ;
Whaley, KB .
PHYSICAL REVIEW LETTERS, 2000, 85 (08) :1758-1761
[2]   Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment [J].
Duan, LM ;
Guo, GC .
PHYSICAL REVIEW A, 1998, 57 (02) :737-741
[3]   Bulk spin-resonance quantum computation [J].
Gershenfeld, NA ;
Chuang, IL .
SCIENCE, 1997, 275 (5298) :350-356
[4]   Theory of quantum error correction for general noise [J].
Knill, E ;
Laflamme, R ;
Viola, L .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2525-2528
[5]   The physical nature of information [J].
Landauer, R .
PHYSICS LETTERS A, 1996, 217 (4-5) :188-193
[6]   Decoherence-free subspaces for quantum computation [J].
Lidar, DA ;
Chuang, IL ;
Whaley, KB .
PHYSICAL REVIEW LETTERS, 1998, 81 (12) :2594-2597
[7]   Concatenating decoherence-free subspaces with quantum error correcting codes [J].
Lidar, DA ;
Bacon, D ;
Whaley, KB .
PHYSICAL REVIEW LETTERS, 1999, 82 (22) :4556-4559
[8]   SCHEME FOR REDUCING DECOHERENCE IN QUANTUM COMPUTER MEMORY [J].
SHOR, PW .
PHYSICAL REVIEW A, 1995, 52 (04) :R2493-R2496
[9]   Quantum computing [J].
Steane, A .
REPORTS ON PROGRESS IN PHYSICS, 1998, 61 (02) :117-173
[10]  
THIRRING W, 1981, COURSE MATH PHYSICS, V3