Explicit unobstructed primes for modular deformation problems of squarefree level

被引:10
作者
Weston, T [1 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
modular forms; deformation theory; congruences;
D O I
10.1016/j.jnt.2004.01.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a newform of weight k greater than or equal to 3 with Fourier coefficients in a number field K. We give explicit bounds on the set of primes lambda of K for which the deformation problem associated to the mod lambda Galois representation of f is obstructed. We include some explicit examples. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:199 / 218
页数:20
相关论文
共 22 条
[1]   REPRESENTATIONS RELATED TO CM ELLIPTIC-CURVES [J].
BOSTON, N ;
ULLOM, SV .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1993, 113 :71-85
[2]  
CARAYOL H, 1986, ANN SCI ECOLE NORM S, V19, P409
[3]  
deSmit B, 1997, MODULAR FORMS AND FERMAT'S LAST THEOREM, P313
[4]  
Diamond F, 1997, MODULAR FORMS AND FERMAT'S LAST THEOREM, P475
[5]   LIFTING MODULAR MOD L REPRESENTATIONS [J].
DIAMOND, F ;
TAYLOR, R .
DUKE MATHEMATICAL JOURNAL, 1994, 74 (02) :253-269
[6]  
DIAMOND F, ADJOINT MOTIVES MODU
[7]  
DICKINSON M, 2001, ARITHMETIC ALGEBRAIC, P233
[8]  
EDIXHOVEN B, 1997, MODULAR FORMS FERMAT, P475
[9]   A FINITENESS THEOREM FOR THE SYMMETRICAL SQUARE OF AN ELLIPTIC CURVE [J].
FLACH, M .
INVENTIONES MATHEMATICAE, 1992, 109 (02) :307-327
[10]  
FLACH M, 1990, J REINE ANGEW MATH, V412, P113