Vafa-Witten Theory and Iterated Integrals of Modular Forms

被引:10
|
作者
Manschot, Jan [1 ,2 ]
机构
[1] Trinity Coll Dublin, Sch Math, Dublin 2, Ireland
[2] Trinity Coll Dublin, Hamilton Math Inst, Dublin 2, Ireland
关键词
INDEFINITE THETA-SERIES; BETTI NUMBERS; APPELL FUNCTIONS; STABLE SHEAVES; VECTOR-BUNDLES; INVARIANTS; RANK-2; SPACES; IDENTITIES; SURFACES;
D O I
10.1007/s00220-019-03389-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Vafa-Witten (VW) theory is a topologically twisted version of N=4 supersymmetric Yang-Mills theory. S-duality suggests that the partition function of VW theory with gauge group SU(N) transforms as a modular form under duality transformations. Interestingly, Vafa and Witten demonstrated the presence of a modular anomaly, when the theory has gauge group SU(2) and is considered on the complex projective plane P2. This modular anomaly could be expressed as an integral of a modular form, and also be traded for a holomorphic anomaly. We demonstrate that the modular anomaly for gauge group SU(3) involves an iterated integral of modular forms. Moreover, the modular anomaly for SU(3) can be traded for a holomorphic anomaly, which is shown to factor into a product of the partition functions for lower rank gauge groups. The SU(3) partition function is mathematically an example of a mock modular form of depth two.
引用
收藏
页码:787 / 831
页数:45
相关论文
共 19 条
  • [1] Vafa-Witten invariants from modular anomaly
    Alexandrov, Sergei
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2021, 15 (01) : 149 - 219
  • [2] Virtual Refinements of the Vafa-Witten Formula
    Gottsche, Lothar
    Kool, Martijn
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (01) : 1 - 49
  • [3] Twisted sheaves and SU(r)/Zr Vafa-Witten theory
    Jiang, Yunfeng
    Kool, Martijn
    MATHEMATISCHE ANNALEN, 2022, 382 (1-2) : 719 - 743
  • [4] Vafa-Witten Invariants from Exceptional Collections
    Beaujard, Guillaume
    Manschot, Jan
    Pioline, Boris
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 385 (01) : 101 - 226
  • [5] Rank N Vafa-Witten invariants, modularity and blow-up
    Alexandrov, Sergei
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 25 (02) : 275 - 308
  • [6] AN EXACT FORMULA FOR U(3) VAFA-WITTEN INVARIANTS ON P2
    Bringmann, Kathrin
    Nazaroglu, Caner
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (09) : 6135 - 6159
  • [7] Transversality for the Full Rank Part of Vafa-Witten Moduli Spaces
    Dai, Bo
    Guan, Ren
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 389 (02) : 1047 - 1060
  • [8] Motivic virtual signed Euler characteristics and their applications to Vafa-Witten invariants
    Jiang, Yunfeng
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (06) : 2279 - 2300
  • [9] Modular graph forms from equivariant iterated Eisenstein integrals
    Dorigoni, Daniele
    Doroudiani, Mehregan
    Drewitt, Joshua
    Hidding, Martijn
    Kleinschmidt, Axel
    Matthes, Nils
    Schlotterer, Oliver
    Verbeek, Bram
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (12)
  • [10] Generating series of all modular graph forms from iterated Eisenstein integrals
    Gerken, Jan E.
    Kleinschmidt, Axel
    Schlotterer, Oliver
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (07)