Soft Restrictions on Positively Curved Riemannian Submersions

被引:6
作者
Gonzalez-Alvaro, David [1 ,2 ]
Guijarro, Luis [1 ,2 ]
机构
[1] Univ Autonoma Madrid, Dept Math, Madrid, Spain
[2] ICMAT CSIC UAM UCM UC3M, Madrid, Spain
关键词
Riemannian submersions; Positive sectional curvature; Wilking's transverse equation; NONNEGATIVE CURVATURE; CONJUGATE-POINTS; GEODESICS; FOLIATIONS;
D O I
10.1007/s12220-015-9596-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We bound the dimension of the fiber of a Riemannian submersion from a positively curved manifold in terms of the dimension of the base of the submersion and either its conjugate radius or the length of its shortest closed geodesic.
引用
收藏
页码:1442 / 1452
页数:11
相关论文
共 14 条
[1]  
Amman M., ARXIV14031440
[2]  
[Anonymous], 1996, TRANSLATIONS MATH MO
[3]   SOME EXISTENCE THEOREMS FOR CLOSED GEODESICS [J].
BALLMANN, W ;
THORBERGSSON, G ;
ZILLER, W .
COMMENTARII MATHEMATICI HELVETICI, 1983, 58 (03) :416-432
[4]  
Fet A. I., 1951, DOKL AKAD NAUK SSSR, V81, P17
[5]  
Gromoll D., 2009, Progress in Mathematics, V268
[6]   CONJUGATE-POINTS ON SPACELIKE GEODESICS OR PSEUDO-SELF-ADJOINT MORSE-STURM-LIOUVILLE SYSTEMS [J].
HELFER, AD .
PACIFIC JOURNAL OF MATHEMATICS, 1994, 164 (02) :321-350
[7]  
Jimenez W., 2006, THESIS
[8]   RIEMANNIAN FOLIATIONS ON MANIFOLDS WITH NONNEGATIVE CURVATURE [J].
KIM, H ;
TONDEUR, P .
MANUSCRIPTA MATHEMATICA, 1992, 74 (01) :39-45
[9]   Notes on the Jacobi equation [J].
Lytchak, Alexander .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2009, 27 (02) :329-334
[10]   SUBMERSIONS AND GEODESICS [J].
ONEILL, B .
DUKE MATHEMATICAL JOURNAL, 1967, 34 (02) :363-&