iTRAQ-based quantitative proteomic analysis of silkworm infected with Beauveria bassiana

被引:4
|
作者
Lu, Dingding [1 ]
Xu, Ping [2 ]
Hou, Chengxiang [2 ,3 ]
Li, Ruilin [2 ]
Hu, Congwu [2 ]
Guo, Xijie [2 ,3 ]
机构
[1] Zhenjiang Coll, Zhenjiang 212028, Jiangsu, Peoples R China
[2] Jiangsu Univ Sci & Technol, Sch Biotechnol, Zhenjiang 212018, Jiangsu, Peoples R China
[3] Chinese Acad Agr Sci, Sericultural Res Inst, Zhenjiang 212018, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Bombyx mori; Beauveria bassiana; iTRAQ; Proteome; PEPTIDOGLYCAN RECOGNITION PROTEIN; INDUCTIVE EXPRESSION PATTERNS; TOLL-RELATED GENES; BOMBYX-MORI; ENTOMOPATHOGENIC FUNGUS; METARHIZIUM-ANISOPLIAE; FILAMENTOUS FUNGUS; MOLECULAR-CLONING; IMMUNE-RESPONSE; INSECT;
D O I
10.1016/j.molimm.2021.04.018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Beauveria bassiana is a harmful pathogen to the economically important insect silkworm, always causes serious disease to the silkworm, which results in great losses to the sericulture industry. In order to explore the silkworm (Bombyx mori) response to B. bassiana infection, differential proteomes of the silkworm responsive to B. bassiana infection were identified with isobaric tags for relative and absolute quantitation (iTRAQ) at the different stage of the 3rd instar silkworm larvae. Among the 5040 proteins identified with confidence level of =95 %, total 937 proteins were differentially expressed, of which 488 proteins were up-regulated and 449 proteins were downregulated. 23, 15, 250, 649 differentially expressed proteins (DEPs) were reliably quantified by iTRAQ analysis in the B. bassiana infected larvae at 18, 24, 36, 48 h post infection (hpi) respectively. Based on GO annotations, 6, 4, 128, 316 DEPs were involved in biological processes, 12, 5, 143, 376 DEPs were involved in molecular functions, and 6, 3, 108, 256 DEPs were involved in cell components at 18, 24, 36, 48 hpi respectively. KEGG pathway analysis displayed that 18, 12, 210, 548 DEPs separately participated in 63, 35, 201, 264 signal transduction pathways at different time of infection, and moreover a higher proportion of DEPs involved in metabolic pathways. The cluster analysis on the DEPs of different infection stages distinguished a co-regulated DEP, lysozyme precursor, which was up-regulated at both the mRNA level and the protein level, indicating that the lysozyme protein kept playing an important role in defending the silkworm against B. bassiana infection. This was the first report using an iTRAQ approach to analyze proteomes of the whole silkworm against B. bassiana infection, which contributes to better understanding the defense mechanisms of silkworm to B. bassiana infection and provides important experimental data for the identification of key factors involved in the interaction between the pathogenic fungus and its host.
引用
收藏
页码:204 / 216
页数:13
相关论文
共 50 条
  • [21] ITRAQ-Based Quantitative Proteomic Analysis of Heart in a Rat Model of Exhaustive Training
    Liu, Haiyan
    Cao, Xuebin
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2015, 66 (16) : C30 - C30
  • [22] iTRAQ-based quantitative proteomic analysis provides insight for molecular mechanism of neuroticism
    Lei Tian
    Hong-Zhao You
    Hao Wu
    Yu Wei
    Min Zheng
    Lei He
    Jin-Ying Liu
    Shu-Zhen Guo
    Yan Zhao
    Ren-Lai Zhou
    Xingang Hu
    Clinical Proteomics, 2019, 16
  • [23] iTRAQ-based quantitative proteomic analysis of Pelteobagrus vachelli liver in response to hypoxia
    Wang, Min
    Liao, Shujia
    Fu, Zhineng
    Zang, Xuechun
    Yin, Shaowu
    Wang, Tao
    JOURNAL OF PROTEOMICS, 2022, 251
  • [24] iTRAQ-based quantitative proteomic analysis of wheat roots in response to salt stress
    Jiang, Qiyan
    Li, Xiaojuan
    Niu, Fengjuan
    Sun, Xianjun
    Hu, Zheng
    Zhang, Hui
    PROTEOMICS, 2017, 17 (08)
  • [25] iTRAQ-Based Quantitative Proteomic Analysis of the Potentiated and Dormant Antler Stem Cells
    Dong, Zhen
    Ba, Hengxing
    Zhang, Wei
    Coates, Dawn
    Li, Chunyi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (11)
  • [26] iTRAQ-based quantitative proteomic analysis reveals alterations in the metabolism of Actinidia arguta
    Miaomiao Lin
    Jinbao Fang
    Xiujuan Qi
    Yukuo Li
    Jinyong Chen
    Leiming Sun
    Yunpeng Zhong
    Scientific Reports, 7
  • [27] iTRAQ-based quantitative proteomic analysis provides insight for molecular mechanism of neuroticism
    Tian, Lei
    You, Hong-Zhao
    Wu, Hao
    Wei, Yu
    Zheng, Min
    He, Lei
    Liu, Jin-Ying
    Guo, Shu-Zhen
    Zhao, Yan
    Zhou, Ren-Lai
    Hu, Xingang
    CLINICAL PROTEOMICS, 2019, 16 (01)
  • [28] Quantitative iTRAQ-based proteomic analysis of differentially expressed proteins in aging in human and monkey
    Wang, Hao
    Zhu, Xiaoqi
    Shen, Junyan
    Zhao, En-Feng
    He, Dajun
    Shen, Haitao
    Liu, Hailiang
    Zhou, Yongxin
    BMC GENOMICS, 2019, 20 (01)
  • [29] iTRAQ-based quantitative proteomic analysis of the hepatopancreas in Scylla paramamosain during the molting cycle
    Liu, Lei
    Fu, Yuanyuan
    Xiao, Lichan
    Liu, Xiao
    Fang, Wei
    Wang, Chunlin
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS, 2021, 40
  • [30] Quantitative iTRAQ-based proteomic analysis of differentially expressed proteins in aging in human and monkey
    Hao Wang
    Xiaoqi Zhu
    Junyan Shen
    En-Feng Zhao
    Dajun He
    Haitao Shen
    Hailiang Liu
    Yongxin Zhou
    BMC Genomics, 20