Existence of nontrivial solutions for fractional Schrodinger-Poisson system with sign-changing potentials

被引:7
作者
Che, Guofeng [1 ]
Chen, Haibo [1 ]
Shi, Hongxia [2 ]
Wang, Zewei [3 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Hunan First Normal Univ, Sch Math & Computat Sci, Changsha 410205, Hunan, Peoples R China
[3] Sun Yat Sen Univ, Sch Earth Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional Schrodinger-Poisson system; nodal solution; positive solution; variational methods; GROUND-STATE SOLUTIONS; POSITIVE SOLUTIONS; ENERGY SOLUTIONS; NODAL SOLUTIONS; BOUND-STATES; EQUATIONS; MULTIPLICITY;
D O I
10.1002/mma.4951
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following fractional Schrodinger-Poisson system {(-Delta)alpha u+ V(x)u + K(x)phi u = f(x)vertical bar u vertical bar q-2u, in R-3 (-Delta)t phi = K(x)u2, in R3 where 0< t= a< 1, q. o4; 2* athorn, and 4a+ 2t= 3 and the functions V(x), K(x) and f(x) have finite limits as | x|.8. By imposing some suitable conditions on the decay rate of the functions, we prove that the above system has two nontrivial solutions. One of them is positive and the other one is sign-changing. Recent results from the literature are generally improved and extended.
引用
收藏
页码:5050 / 5064
页数:15
相关论文
共 39 条
[1]   Existence of least energy nodal solution for a Schrodinger-Poisson system in bounded domains [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06) :1153-1166
[2]   Multiple bound states for the Schrodinger-Poisson problem [J].
Ambrosetti, Antonio ;
Ruiz, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) :391-404
[3]  
[Anonymous], 2017, ELECTRON J DIFFER EQ
[4]  
[Anonymous], 1997, Minimax theorems
[5]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[6]   Positive and nodal solutions for a nonlinear Schrodinger-Poisson system with sign-changing potentials [J].
Batista, Alex M. ;
Furtado, Marcelo F. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 39 :142-156
[7]  
Benci V., 1998, Topol. Methods Nonlinear Anal., V11, P283
[8]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[9]   Positive solutions for some non-autonomous Schrodinger-Poisson systems [J].
Cerami, Giovanna ;
Vaira, Giusi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) :521-543
[10]   Fractional Laplacian in conformal geometry [J].
Chang, Sun-Yung Alice ;
del Mar Gonzalez, Maria .
ADVANCES IN MATHEMATICS, 2011, 226 (02) :1410-1432