Renormalization conjecture and rigidity theory for circle diffeomorphisms with breaks

被引:22
作者
Khanin, Konstantin [1 ]
Kocic, Sasa [2 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Univ Mississippi, Dept Math, University, MS 38677 USA
关键词
PIECEWISE-SMOOTH HOMEOMORPHISMS; ROBUST RIGIDITY; UNIVERSALITY; CONJUGATION;
D O I
10.1007/s00039-014-0309-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the renormalization conjecture for circle diffeomorphisms with breaks, i.e., that the renormalizations of any two C (2+alpha) -smooth (alpha a (0, 1)) circle diffeomorphisms with a break point, with the same irrational rotation number and the same size of the break, approach each other exponentially fast in the C (2)-topology. As was shown in [KKM], this result implies the following strong rigidity statement: for almost all irrational numbers rho, any two circle diffeomorphisms with a break, with the same rotation number rho and the same size of the break, are C (1)-smoothly conjugate to each other. As we proved in [KK13], the latter claim cannot be extended to all irrational rotation numbers. These results can be considered an extension of Herman's theory on the linearization of circle diffeomorphisms.
引用
收藏
页码:2002 / 2028
页数:27
相关论文
共 37 条
[1]   The Critical Renormalization Fixed Point for Commuting Pairs of Area-Preserving Maps [J].
Arioli, Gianni ;
Koch, Hans .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 295 (02) :415-429
[2]  
Arnol'd V.I., 1963, Usp. Mat. Nauk. SSSR, V18, P13
[3]  
Arnold VI., 1961, IZV AKAD NAUK SSSR M, V25, P21
[4]   Reducibility or nonuniform hyperbolicity for quasiperiodic Schrodinger cocycles [J].
Avila, Artur ;
Krikorian, Raphael .
ANNALS OF MATHEMATICS, 2006, 164 (03) :911-940
[5]  
Coullet Pierre., 1978, J PHYS C SOLID STATE, VC 539, pC5
[6]   Rigidity for piecewise smooth homeomorphisms on the circle [J].
Cunha, Kleyber ;
Smania, Daniel .
ADVANCES IN MATHEMATICS, 2014, 250 :193-226
[7]   Renormalization for piecewise smooth homeomorphisms on the circle [J].
Cunha, Kleyber ;
Smania, Daniel .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (03) :441-462
[8]   Rigidity of critical circle mappings II [J].
De Faria, E ;
De Melo, W .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (02) :343-370
[9]  
de Faria E., 1999, J. Eur. Math. Soc, V1, P339, DOI [10.1007/s100970050011, DOI 10.1007/S100970050011]
[10]  
Denjoy A., 1932, Journal de Mathematiques Pures et Appliques, V11, P333