A discrete maximum principle for the weak Galerkin finite element method on nonuniform rectangular partitions

被引:2
|
作者
Liu, Yujie [1 ,2 ]
Wang, Junping [3 ]
机构
[1] Ctr Quantum Comp, Peng Cheng Lab, Shenzhen 518005, Guangdong, Peoples R China
[2] Huazhong Univ Sci & Technol, Ctr Math Sci, Wuhan, Hubei, Peoples R China
[3] Natl Sci Fdn, Div Math Sci, Alexandria, VA USA
基金
美国国家科学基金会;
关键词
discrete maximum principle; finite difference method; finite element method; second order elliptic equations; simplified weak Galerkin; SCHEMES; EQUATIONS;
D O I
10.1002/num.22440
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article establishes a discrete maximum principle (DMP) for the approximate solution of convection-diffusion-reaction problems obtained from the weak Galerkin (WG) finite element method on nonuniform rectangular partitions. The DMP analysis is based on a simplified formulation of the WG involving only the approximating functions defined on the boundary of each element. The simplified weak Galerkin (SWG) method has a reduced computational complexity over the usual WG, and indeed provides a discretization scheme different from the WG when the reaction terms are present. An application of the SWG on uniform rectangular partitions yields some 5- and 7-point finite difference schemes for the second order elliptic equation. Numerical experiments are presented to verify the DMP and the accuracy of the scheme, particularly the finite difference scheme.
引用
收藏
页码:552 / 578
页数:27
相关论文
共 50 条
  • [31] The weak Galerkin finite element method for Stokes interface problems with curved interface
    Yang, Lin
    Zhai, Qilong
    Zhang, Ran
    APPLIED NUMERICAL MATHEMATICS, 2025, 208 : 98 - 122
  • [32] A stabilizer-free weak Galerkin finite element method with Alikhanov formula on nonuniform mesh for a linear reaction-subdiffusion problem
    Ma, Jie
    Gao, Fuzheng
    Du, Ning
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 148 : 180 - 187
  • [33] Discrete maximum principle for interior penalty discontinuous Galerkin methods
    Horvath, Tamas L.
    Mincsovics, Miklos E.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (04): : 664 - 679
  • [34] DISCRETE MAXIMUM PRINCIPLE FOR PRISMATIC FINITE ELEMENTS
    Vejchodsky, Tomas
    ALGORITMY 2009: 18TH CONFERENCE ON SCIENTIFIC COMPUTING, 2009, : 266 - 275
  • [35] Fully Discrete Galerkin Finite Element Method for the Cubic Nonlinear Schrodinger Equation
    Wang, Jianyun
    Huang, Yunqing
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2017, 10 (03) : 671 - 688
  • [36] Finite Element Methods Respecting the Discrete Maximum Principle for Convection-Diffusion Equations
    Barrenechea, Gabriel R.
    John, Volker
    Knobloch, Petr
    SIAM REVIEW, 2024, 66 (01) : 3 - 88
  • [37] A weak discrete maximum principle for hp-FEM
    Solin, Pavel
    Vejchodsky, Tomas
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 209 (01) : 54 - 65
  • [38] ANALYSIS OF WEAK GALERKIN FINITE ELEMENT METHODS WITH SUPERCLOSENESS
    Al-taweel, A. H. M. E. D.
    Hussain, S. A. Q. I. B.
    Wang, X. I. A. O. S. H. E. N.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (06) : 761 - 776
  • [39] Weak Galerkin finite element method for time dependent reaction-diffusion equation
    Gao, Fuzheng
    Zhao, Guoqun
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (06) : 1086 - 1102
  • [40] THE WEAK GALERKIN FINITE ELEMENT METHOD FOR SOLVING THE TIME-DEPENDENT STOKES FLOW
    Wang, Xiuli
    Liu, Yuanyuan
    Zhai, Qilong
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2020, 17 (05) : 732 - 745