B.-Y. Chen inequalities for slant submanifolds in quaternionic space forms

被引:27
作者
Vilcu, Gabriel Eduard [1 ,2 ]
机构
[1] Petr Gas Univ Ploiesti, Dept Math & Comp Sci, Ploiesti, Romania
[2] Univ Bucharest, Fac Math & Comp Sci, Res Ctr Geometry Topol & Algebra, Bucharest, Romania
关键词
Chen's invariant; squared mean curvature; quaternionic space form; slant submanifold; TOTALLY-REAL-SUBMANIFOLDS; CHEN; B.Y; INEQUALITY; BASIC EQUALITY; IMMERSIONS;
D O I
10.3906/mat-0807-14
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper some B.-Y. Chen inequalities for slant submanifolds in quaternionic space forms are established.
引用
收藏
页码:115 / 128
页数:14
相关论文
共 34 条
[1]  
Aktan N, 2008, BALK J GEOM APPL, V13, P1
[2]  
Alegre P, 2007, INDIAN J PURE AP MAT, V38, P185
[3]   Certain inequalities for submanifolds in (K, μ)-contact space forms [J].
Arslan, K ;
Ezentas, R ;
Mihai, I ;
Murathan, C ;
Özgür, C .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2001, 64 (02) :201-212
[4]  
Barros M., 1981, Kodai Math. J, P399
[5]   Lagrangian submanifolds attaining equality in the improved Chen's inequality [J].
Bolton, J. ;
Vrancken, L. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (02) :311-315
[6]   Some slant submanifolds of S-manifolds [J].
Carriazo, A ;
Fernández, LM ;
Hans-Uber, MB .
ACTA MATHEMATICA HUNGARICA, 2005, 107 (04) :267-285
[7]  
Carriazo A, 2003, INDIAN J PURE AP MAT, V34, P1287
[8]   δ-invariants and their applications to centroaffine geometry [J].
Chen, BY ;
Dillen, F ;
Verstraelen, L .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2005, 22 (03) :341-354
[9]   Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions [J].
Chen, BY .
GLASGOW MATHEMATICAL JOURNAL, 1999, 41 :33-41
[10]   TOTALLY-REAL SUBMANIFOLDS OF CPN SATISFYING A BASIC EQUALITY [J].
CHEN, BY ;
DILLEN, F ;
VERSTRAELEN, L ;
VRANCKEN, L .
ARCHIV DER MATHEMATIK, 1994, 63 (06) :553-564