Evaluation of three potential machine learning algorithms for predicting the velocity and turbulence intensity of a wind turbine wake

被引:30
作者
Purohit, Shantanu [1 ]
Ng, E. Y. K. [1 ]
Kabir, Ijaz Fazil Syed Ahmed [1 ]
机构
[1] Nanyang Technol Univ, Coll Engn, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
关键词
Wake velocity; Turbulence intensity; Support vector regression (SVR); Artificial neural networks (ANN); eXtreme gradient boosting (XGBoost); NEURAL-NETWORKS; FLOW STRUCTURE; MODEL; FARM; OPTIMIZATION; SIMILARITY;
D O I
10.1016/j.renene.2021.11.097
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, three machine learning (ML) algorithms, Support Vector Regression (SVR), Artificial Neural Networks (ANN), and Extreme Gradient Boosting (XGBoost), are validated to estimate the velocity and turbulence intensity of a wind turbine's wake at distinct downstream distances. To this end, a series of high-fidelity numerical simulations for the NREL Phase VI wind turbine is carried out to generate training and test datasets for the three machine learning algorithms. The predicted wake velocity and turbulence intensity from the ML models are also contrasted with significant existing analytical wake models. Machine learning algorithms estimate velocity and turbulence intensity in the wake in a way commensurate to the Computational Fluid Dynamics (CFD) simulations while running at a similar pace as low-fidelity wake models. The results demonstrate that machine learning-based algorithms can predict velocity and turbulence intensity better with higher precision than the traditional analytical wake models. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:405 / 420
页数:16
相关论文
共 63 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
[Anonymous], 2015, LARGE EDDY SIMULATIO, DOI DOI 10.1002/WE
[3]  
[Anonymous], VERS 1 3 OP THEOR BA
[4]   Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore [J].
Barthelmie, R. J. ;
Hansen, K. ;
Frandsen, S. T. ;
Rathmann, O. ;
Schepers, J. G. ;
Schlez, W. ;
Phillips, J. ;
Rados, K. ;
Zervos, A. ;
Politis, E. S. ;
Chaviaropoulos, P. K. .
WIND ENERGY, 2009, 12 (05) :431-444
[5]   A new analytical model for wind-turbine wakes [J].
Bastankhah, Majid ;
Porte-Agel, Fernando .
RENEWABLE ENERGY, 2014, 70 :116-123
[6]  
Bengio Y., 2012, LECT NOTES COMPUT SC, V7700, DOI [10.1007/ 978-3-642-35289-8_26, DOI 10.1007/978-3-642-35289-8_26.LECTU:437E78]
[7]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[8]   Prediction of aerodynamic flow fields using convolutional neural networks [J].
Bhatnagar, Saakaar ;
Afshar, Yaser ;
Pan, Shaowu ;
Duraisamy, Karthik ;
Kaushik, Shailendra .
COMPUTATIONAL MECHANICS, 2019, 64 (02) :525-545
[9]   Deep learning with knowledge transfer for explainable anomaly prediction in wind turbines [J].
Chatterjee, Joyjit ;
Dethlefs, Nina .
WIND ENERGY, 2020, 23 (08) :1693-1710
[10]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794