Gap solitons in spin-orbit-coupled Bose-Einstein condensates in bichromatic optical lattices

被引:14
作者
Xu, T. F. [1 ,2 ]
Zhang, Y. F. [1 ]
Li, Zai-Dong [3 ,4 ]
Zhang, C. [5 ,6 ]
Hao, R. [1 ]
机构
[1] Yanshan Univ, Hebei Key Lab Microstruct Mat Phys, Sch Sci, Qinhuangdao 066004, Peoples R China
[2] Univ Calif San Diego, Dept Phys, San Diego, CA 92093 USA
[3] Hebei Univ Technol, Dept Appl Phys, Tianjin 300401, Peoples R China
[4] Hebei Univ Technol, Key Lab Elect Mat & Devices Tianjin, Sch Elect & Informat Engn, Tianjin 300401, Peoples R China
[5] Henan Univ, Henan Key Lab Photovolta Mat, Kaifeng 475004, Peoples R China
[6] Henan Univ, Sch Phys & Elect, Kaifeng 475004, Peoples R China
来源
OPTIK | 2018年 / 168卷
基金
中国国家自然科学基金;
关键词
Spin-orbit coupling; Gap solitons; Bose-Einstein condensates; Bichromatic optical lattice; ANDERSON LOCALIZATION; VORTEX SOLITONS;
D O I
10.1016/j.ijleo.2018.04.097
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate gap solitons in spin-orbit-coupled Bose-Einstein condensates in bichromatic optical lattices and mainly focus the effect of the secondary periodic potential trap on the gap solitons. The gap solitons and linear Bloch waves are obtained by solving coupled Gross-Pitaevskii equations in bichromatic optical lattice. The results show that parity symmetry plays an important role when the detuning between the Raman beam and energy levels of the atoms is zero. It is shown that the soliton amplitude increases with the increasing secondary periodic potential well depth. The gap solitons become spin polarization for the case of nonzero detuning. Linear stability analysis method has been employed to investigate the stability of gap solitons located in the first and second band gaps. The results prove that the periodic secondary potential trap depths have important effects on the stability of gap solitons. (C) 2018 Elsevier GmbH. All rights reserved.
引用
收藏
页码:140 / 151
页数:12
相关论文
共 35 条
  • [21] Anderson localization of a non-interacting Bose-Einstein condensate
    Roati, Giacomo
    D'Errico, Chiara
    Fallani, Leonardo
    Fattori, Marco
    Fort, Chiara
    Zaccanti, Matteo
    Modugno, Giovanni
    Modugno, Michele
    Inguscio, Massimo
    [J]. NATURE, 2008, 453 (7197) : 895 - U36
  • [22] Quasiperiodic Bose-Hubbard model and localization in one-dimensional cold atomic gases
    Roux, G.
    Barthel, T.
    McCulloch, I. P.
    Kollath, C.
    Schollwoeck, U.
    Giamarchi, T.
    [J]. PHYSICAL REVIEW A, 2008, 78 (02):
  • [23] Atomic landau-zener tunneling in fourier-synthesized optical lattices
    Salger, Tobias
    Geckeler, Carsten
    Kling, Sebastian
    Weitz, Martin
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (19)
  • [24] Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices
    Soltan-Panahi, Parvis
    Luehmann, Dirk-Soeren
    Struck, Julian
    Windpassinger, Patrick
    Sengstock, Klaus
    [J]. NATURE PHYSICS, 2012, 8 (01) : 71 - 75
  • [25] Quantum Simulation of Frustrated Classical Magnetism in Triangular Optical Lattices
    Struck, J.
    Oelschlaeger, C.
    Le Targat, R.
    Soltan-Panahi, P.
    Eckardt, A.
    Lewenstein, M.
    Windpassinger, P.
    Sengstock, K.
    [J]. SCIENCE, 2011, 333 (6045) : 996 - 999
  • [26] Transport of a Bose Gas in 1D Disordered Lattices at the Fluid-Insulator Transition
    Tanzi, Luca
    Lucioni, Eleonora
    Chaudhuri, Saptarishi
    Gori, Lorenzo
    Kumar, Avinash
    D'Errico, Chiara
    Inguscio, Massimo
    Modugno, Giovanni
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (11)
  • [27] Truncated-Bloch-wave solitons in optical lattices
    Wang, Jiandong
    Yang, Jianke
    Alexander, Tristram J.
    Kivshar, Yuri S.
    [J]. PHYSICAL REVIEW A, 2009, 79 (04):
  • [28] Superfluidity of Bose-Einstein condensate in an optical lattice: Landau-Zener tunnelling and dynamical instability
    Wu, B
    Niu, Q
    [J]. NEW JOURNAL OF PHYSICS, 2003, 5 : 104.1 - 104.24
  • [29] Newton waveform relaxation method for solving algebraic nonlinear equations
    Wu, Shulin
    Huang, Chengming
    Liu, Yong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 201 (1-2) : 553 - 560
  • [30] Spin-Liquid Ground State of the S=1/2 Kagome Heisenberg Antiferromagnet
    Yan, Simeng
    Huse, David A.
    White, Steven R.
    [J]. SCIENCE, 2011, 332 (6034) : 1173 - 1176