Gap solitons in spin-orbit-coupled Bose-Einstein condensates in bichromatic optical lattices

被引:14
作者
Xu, T. F. [1 ,2 ]
Zhang, Y. F. [1 ]
Li, Zai-Dong [3 ,4 ]
Zhang, C. [5 ,6 ]
Hao, R. [1 ]
机构
[1] Yanshan Univ, Hebei Key Lab Microstruct Mat Phys, Sch Sci, Qinhuangdao 066004, Peoples R China
[2] Univ Calif San Diego, Dept Phys, San Diego, CA 92093 USA
[3] Hebei Univ Technol, Dept Appl Phys, Tianjin 300401, Peoples R China
[4] Hebei Univ Technol, Key Lab Elect Mat & Devices Tianjin, Sch Elect & Informat Engn, Tianjin 300401, Peoples R China
[5] Henan Univ, Henan Key Lab Photovolta Mat, Kaifeng 475004, Peoples R China
[6] Henan Univ, Sch Phys & Elect, Kaifeng 475004, Peoples R China
来源
OPTIK | 2018年 / 168卷
基金
中国国家自然科学基金;
关键词
Spin-orbit coupling; Gap solitons; Bose-Einstein condensates; Bichromatic optical lattice; ANDERSON LOCALIZATION; VORTEX SOLITONS;
D O I
10.1016/j.ijleo.2018.04.097
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate gap solitons in spin-orbit-coupled Bose-Einstein condensates in bichromatic optical lattices and mainly focus the effect of the secondary periodic potential trap on the gap solitons. The gap solitons and linear Bloch waves are obtained by solving coupled Gross-Pitaevskii equations in bichromatic optical lattice. The results show that parity symmetry plays an important role when the detuning between the Raman beam and energy levels of the atoms is zero. It is shown that the soliton amplitude increases with the increasing secondary periodic potential well depth. The gap solitons become spin polarization for the case of nonzero detuning. Linear stability analysis method has been employed to investigate the stability of gap solitons located in the first and second band gaps. The results prove that the periodic secondary potential trap depths have important effects on the stability of gap solitons. (C) 2018 Elsevier GmbH. All rights reserved.
引用
收藏
页码:140 / 151
页数:12
相关论文
共 35 条
  • [11] Kevrekidis PG, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.056612
  • [12] Fundamental, Multipole, and Half-Vortex Gap Solitons in Spin-Orbit Coupled Bose-Einstein Condensates
    Lobanov, Valery E.
    Kartashov, Yaroslav V.
    Konotop, Vladimir V.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (18)
  • [13] Bose-Einstein condensates in optical lattices: Band-gap structure and solitons
    Louis, PJY
    Ostrovskaya, EA
    Savage, CM
    Kivshar, YS
    [J]. PHYSICAL REVIEW A, 2003, 67 (01): : 9
  • [14] Observation of Subdiffusion in a Disordered Interacting System
    Lucioni, E.
    Deissler, B.
    Tanzi, L.
    Roati, G.
    Zaccanti, M.
    Modugno, M.
    Larcher, M.
    Dalfovo, F.
    Inguscio, M.
    Modugno, G.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (23)
  • [15] Stability limits for gap solitons in a Bose-Einstein condensate trapped in a time-modulated optical lattice
    Mayteevarunyoo, Thawatchai
    Malomed, Boris A.
    [J]. PHYSICAL REVIEW A, 2006, 74 (03):
  • [16] Dynamics of Bose-Einstein condensates in optical lattices
    Morsch, O
    Oberthaler, M
    [J]. REVIEWS OF MODERN PHYSICS, 2006, 78 (01) : 179 - 215
  • [17] Experimental Realization of Plaquette Resonating Valence-Bond States with Ultracold Atoms in Optical Superlattices
    Nascimbene, S.
    Chen, Y. -A.
    Atala, M.
    Aidelsburger, M.
    Trotzky, S.
    Paredes, B.
    Bloch, I.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (20)
  • [18] Qi X. L., 2010, PHYS LETT B, V83, P175
  • [19] Projected-wave-function study of the spin-1/2 Heisenberg model on the kagome lattice
    Ran, Ying
    Hermele, Michael
    Lee, Patrick A.
    Wen, Xiao-Gang
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (11)
  • [20] Ribeiro P., 2000, PHYS REV A, V87, P637