Gap solitons in spin-orbit-coupled Bose-Einstein condensates in bichromatic optical lattices

被引:14
|
作者
Xu, T. F. [1 ,2 ]
Zhang, Y. F. [1 ]
Li, Zai-Dong [3 ,4 ]
Zhang, C. [5 ,6 ]
Hao, R. [1 ]
机构
[1] Yanshan Univ, Hebei Key Lab Microstruct Mat Phys, Sch Sci, Qinhuangdao 066004, Peoples R China
[2] Univ Calif San Diego, Dept Phys, San Diego, CA 92093 USA
[3] Hebei Univ Technol, Dept Appl Phys, Tianjin 300401, Peoples R China
[4] Hebei Univ Technol, Key Lab Elect Mat & Devices Tianjin, Sch Elect & Informat Engn, Tianjin 300401, Peoples R China
[5] Henan Univ, Henan Key Lab Photovolta Mat, Kaifeng 475004, Peoples R China
[6] Henan Univ, Sch Phys & Elect, Kaifeng 475004, Peoples R China
来源
OPTIK | 2018年 / 168卷
基金
中国国家自然科学基金;
关键词
Spin-orbit coupling; Gap solitons; Bose-Einstein condensates; Bichromatic optical lattice; ANDERSON LOCALIZATION; VORTEX SOLITONS;
D O I
10.1016/j.ijleo.2018.04.097
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate gap solitons in spin-orbit-coupled Bose-Einstein condensates in bichromatic optical lattices and mainly focus the effect of the secondary periodic potential trap on the gap solitons. The gap solitons and linear Bloch waves are obtained by solving coupled Gross-Pitaevskii equations in bichromatic optical lattice. The results show that parity symmetry plays an important role when the detuning between the Raman beam and energy levels of the atoms is zero. It is shown that the soliton amplitude increases with the increasing secondary periodic potential well depth. The gap solitons become spin polarization for the case of nonzero detuning. Linear stability analysis method has been employed to investigate the stability of gap solitons located in the first and second band gaps. The results prove that the periodic secondary potential trap depths have important effects on the stability of gap solitons. (C) 2018 Elsevier GmbH. All rights reserved.
引用
收藏
页码:140 / 151
页数:12
相关论文
共 50 条
  • [1] Gap solitons in spin-orbit-coupled Bose-Einstein condensates in optical lattices
    Zhang, Yongping
    Xu, Yong
    Busch, Thomas
    PHYSICAL REVIEW A, 2015, 91 (04):
  • [2] Composite solitons in spin-orbit-coupled Bose-Einstein condensates within optical lattices
    Chen, Junbo
    Mihalache, Dumitru
    Belic, Milivoj R.
    Gao, Xuzhen
    Zhu, Danfeng
    Deng, Dingnan
    Qiu, Shaobin
    Zhu, Xing
    Zeng, Liangwei
    CHAOS SOLITONS & FRACTALS, 2024, 186
  • [3] Spin-orbit-coupled spinor gap solitons in Bose-Einstein condensates
    Yang, Jing
    Zhang, Yongping
    PHYSICAL REVIEW A, 2023, 107 (02)
  • [4] Gap solitons in spin-orbit-coupled Bose-Einstein condensates in mixed linear-nonlinear optical lattices
    Zhu, Xing
    Li, Huagang
    Shi, Zhiwei
    Xiang, Ying
    He, Yingji
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2017, 50 (15)
  • [5] Wannier solitons in spin-orbit-coupled Bose-Einstein condensates in optical lattices with a flat band
    Wang, Chenhui
    Zhang, Yongping
    Konotop, V. V.
    PHYSICAL REVIEW A, 2023, 108 (01)
  • [6] Landau-Zener tunneling in spin-orbit-coupled Bose-Einstein condensates in bichromatic optical lattices
    Xu, T. F.
    Liu, C. S.
    OPTIK, 2018, 170 : 391 - 399
  • [7] Creating moving gap solitons in spin-orbit-coupled Bose-Einstein condensates
    Su, Jin
    Lyu, Hao
    Chen, Yuanyuan
    Zhang, Yongping
    PHYSICAL REVIEW A, 2021, 104 (04)
  • [8] Bright solitons in spin-orbit-coupled Bose-Einstein condensates
    Xu, Yong
    Zhang, Yongping
    Wu, Biao
    PHYSICAL REVIEW A, 2013, 87 (01):
  • [9] Vector gap solitons of spin-orbit-coupled Bose-Einstein condensate in honeycomb optical lattices
    Meng, Hongjuan
    Wang, Jing
    Fan, Xiaobei
    Wang, Qingqing
    Shao, Kaihua
    Zhao, Yuexin
    Wang, Wenyuan
    Shi, Yuren
    PHYSICAL REVIEW E, 2023, 108 (03)
  • [10] Tunable spin-orbit-coupled Bose-Einstein condensates in deep optical lattices
    Salerno, M.
    Abdullaev, F. Kh.
    Gammal, A.
    Tomio, Lauro
    PHYSICAL REVIEW A, 2016, 94 (04)