Batch and continuous processing of polymer layered organoclay nanocomposites

被引:15
作者
Demirkol, Emre A. [1 ]
Kalyon, Dilhan M. [1 ]
机构
[1] Stevens Inst Technol, Hoboken, NJ 07030 USA
关键词
nanocomposites; nanoparticles; organoclay; melt compounding;
D O I
10.1002/app.24362
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The generation of nanocomposites upon intercalation and exfoliation of clay tactoids using melt compounding is a difficult process. In this study various polymeric binders were melt compounded with organophilic clay particles using myriad methods, including sonication, batch mixing, and twin screw extrusion. The characterization of the compounded samples employing X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed that there is little intercalation and exfoliation when nonpolar poly(dimethyl siloxane) (PDMS) and poly(propylene) (PP) binders were used, resulting in no significant changes in the dynamic properties of the suspensions upon small-amplitude oscillatory shearing. On the other hand, when polar polymeric binders, i.e., silanol terminated poly(dimethyl siloxane) and maleic anhydride modified PP were used for compounding with organoclays, TEM and XRD revealed intercalation with some partial exfoliation, resulting in increases in the dynamic properties, along with sensitivity to the thermomechanical history during processing. These results reinforce earlier findings, which suggest that the interfacial properties between the organoclays and the polymeric binders need to be tailored properly to enable the generation of nanocomposites of organoclays using melt compounding technologies. (c) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:1391 / 1398
页数:8
相关论文
共 40 条
[1]   Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials [J].
Alexandre, Michael ;
Dubois, Philippe .
Materials Science and Engineering: R: Reports, 2000, 28 (1-2) :1-63
[2]  
[Anonymous], [No title captured]
[3]   EVOH/clay nanocomposites produced by dynamic melt mixing [J].
Artzi, N ;
Narkis, M ;
Siegmann, A .
POLYMER ENGINEERING AND SCIENCE, 2004, 44 (06) :1019-1026
[4]   Modeling the barrier properties of polymer-layered silicate nanocomposites [J].
Bharadwaj, RK .
MACROMOLECULES, 2001, 34 (26) :9189-9192
[5]   SYNTHESIS AND PROPERTIES OF NEW POLY(DIMETHYLSILOXANE) NANOCOMPOSITES [J].
BURNSIDE, SD ;
GIANNELIS, EP .
CHEMISTRY OF MATERIALS, 1995, 7 (09) :1597-1600
[6]  
Burnside SD, 2000, J POLYM SCI POL PHYS, V38, P1595, DOI 10.1002/(SICI)1099-0488(20000615)38:12<1595::AID-POLB40>3.0.CO
[7]  
2-U
[8]   Nylon 6 nanocomposites by melt compounding [J].
Cho, JW ;
Paul, DR .
POLYMER, 2001, 42 (03) :1083-1094
[9]   Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites [J].
Dennis, HR ;
Hunter, DL ;
Chang, D ;
Kim, S ;
White, JL ;
Cho, JW ;
Paul, DR .
POLYMER, 2001, 42 (23) :9513-9522
[10]  
Erman B., 1997, Structures and Properties of Rubberlike Networks