Branching laws for discrete Wallach points

被引:3
|
作者
Merigon, Stephane [1 ]
Seppaenen, Henrik [2 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, AG AGF, D-64289 Darmstadt, Germany
[2] Univ Paderborn, Fak Elektrotech Informat & Math, Inst Math, D-33098 Paderborn, Germany
基金
瑞典研究理事会;
关键词
Lie group; Holomorphic discrete series; Branching law; Symmetric tube domains; Jordan algebras; Spherical functions; Plancherel theorem; BEREZIN TRANSFORM; TENSOR-PRODUCTS; HOLOMORPHIC REPRESENTATIONS; ANALYTIC CONTINUATION; SERIES; DOMAINS; KERNELS; SPACES;
D O I
10.1016/j.jfa.2010.01.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the (projective) representations of the group of holomorphic automorphisms of a symmetric tube domain V circle plus i Omega that are obtained by analytic continuation of the holomorphic discrete series. For a representation corresponding to a discrete point in the Wallach set, we find the decomposition under restriction to the identity component of GL(Omega). Using Riesz distributions, an explicit intertwining operator is constructed as an analytic continuation of an integral operator. The density of the Plancherel measure involves quotients of Gamma-functions and the c-function for a symmetric cone of smaller rank. (C) 2010 Elsevier Inc. All fights reserved.
引用
收藏
页码:3241 / 3265
页数:25
相关论文
共 50 条