Distribution Transformer Condition Monitoring based on Edge Intelligence for Industrial IoT

被引:0
|
作者
Thangiah, Leny [1 ]
Ramanathan, Chandrashekar [2 ]
Chodisetty, Lakshmi Sirisha [3 ]
机构
[1] Siemens, Singapore, Singapore
[2] Int Inst Informat Technol, Bangalore, Karnataka, India
[3] Siemens, Bangalore, Karnataka, India
来源
2019 IEEE 5TH WORLD FORUM ON INTERNET OF THINGS (WF-IOT) | 2019年
关键词
Intelligent Agents; Edge Intelligence; Edge Computing; IIoT; Condition Monitoring;
D O I
10.1109/wf-iot.2019.8767272
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Adoption of IoT in industrial applications results in huge volumes of data to be processed. By leveraging edge computing and agent based system architecture, autonomous decisions can be made at edge with locally available data without relying on the cloud. An important aspect to consider while designing smart edge systems is the architecture that enables local intelligence and real-time analytics. This paper proposes an architectural approach that combines the key aspects of edge computing and intelligent agents and presents experiment results using a Proof of Concept (PoC) on condition monitoring of distribution transformers in an industrial setting.
引用
收藏
页码:733 / 736
页数:4
相关论文
共 50 条
  • [1] Edge Intelligence for Industrial IoT: Opportunities and Limitations
    Savaglio, Claudio
    Mazzei, Pasquale
    Fortino, Giancarlo
    5TH INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, ISM 2023, 2024, 232 : 397 - 405
  • [2] Industrial IoT Based Condition Monitoring for Wind Energy Conversion System
    Hossain, Md Liton
    Abu-Siada, Ahmed
    Muyeen, S. M.
    Hasan, Md Mubashwar
    Rahman, Md Momtazur
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2021, 7 (03): : 654 - 664
  • [3] Introducing Hardware-Based Intelligence and Reconfigurability on Industrial IoT Edge Nodes
    Fournaris, Apostolos P.
    Alexakos, Christos
    Anagnostopoulos, Christos
    Koulamas, Christos
    Kalogeras, Athanasios
    IEEE DESIGN & TEST, 2019, 36 (04) : 15 - 23
  • [4] Edge-Intelligence-Based Condition Monitoring of Beam Pumping Units Under Heavy Noise in Industrial Internet of Things for Industry 4.0
    Song, Chunhe
    Liu, Shuo
    Han, Guangjie
    Zeng, Peng
    Yu, Haibin
    Zheng, Qingyuan
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (04) : 3037 - 3046
  • [5] Remote Condition Monitoring System for Distribution Transformer
    Nelson, Avinash A.
    Jaiswal, Gajanan C.
    Ballal, Makarand S.
    Tutakne, D. R.
    2014 EIGHTEENTH NATIONAL POWER SYSTEMS CONFERENCE (NPSC), 2014,
  • [6] Intelligent, sensor-based condition monitoring of transformer stations in the distribution network
    Nicolaou, Christina
    Mansour, Ahmad
    Jung, Philipp
    Schellenberg, Max
    Wuerde, Andre
    Walukiewicz, Alexander
    Kahlen, Jannis Nikolas
    Shekow, Marius
    Van Laerhoven, Kristof
    2021 SMART SYSTEMS INTEGRATION (SSI), 2021,
  • [7] Power Transformer Condition Monitoring Based on MAS
    Zheng, Guping
    Dai, Fugui
    2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL IV, PROCEEDINGS, 2009, : 520 - 523
  • [8] Transformer condition monitoring
    Rusov, V.
    Zhivodernikov, S.
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON CONDITION MONITORING AND DIAGNOSIS, 2007, : 1012 - +
  • [9] Intelligence beyond the Edge in IoT
    Yu, Xiaofan
    PROCEEDINGS OF THE 2023 THE 22ND INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS, IPSN 2023, 2023, : 344 - 345
  • [10] Accuracy-Based Task Offloading and Resource Allocation for Edge Intelligence in IoT
    Fan, Wenhao
    Chen, Zeyu
    Su, Yi
    Wu, Fan
    Tang, Bihua
    Liu, Yuan'an
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (02) : 371 - 375