Experimental investigation of the role of a microporous layer on the water transport and performance of a PEM fuel cell

被引:167
作者
Atiyeh, Hasan K.
Karan, Kunal [1 ]
Peppley, Brant
Phoenix, Aaron
Halliop, Ela
Pharoah, Jon
机构
[1] Queens RMC Fuel Cell Res Ctr, Kingston, ON K7L 5L9, Canada
[2] King Saud Univ, Dept Chem Engn, Riyadh 11421, Saudi Arabia
[3] Univ Saskatchewan, Dept Chem Engn, Saskatoon, SK S7N 5A9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
PEM fuel cell; water transport; microporous layer; net water drag; ionomeric membrane;
D O I
10.1016/j.jpowsour.2007.04.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A highly reliable experimental system that consistently closed the overall water balance to within 5% was developed to study the role of a microporous layer (MPL), attached to carbon paper porous transport layer (PTL), on the water transport and performance of a standard 100 cm 2 active area PEM fuel cell. Various combinations of cells were built and tested with PTLs at the electrodes using either carbon fibre paper with a MPL (SGL 10BB) or carbon fibre paper without a MPL (SGL 10BA). The net water drag coefficient at three current densities (0.3, 0.5 and 0.7 A cm(-2)) for two combinations of anode/cathode relative humidity (60/100% and 100/60%) and stoichiometric ratios of H(2)/air (1.4/3 and 1.4/2) was determined from water balance measurements. The addition of a MPL to the carbon fibre paper PTL at the cathode did not cause a statistically significant change to the overall drag coefficient although there was a significant improvement to the fuel cell performance and durability when a MPL was used at the cathode. The presence of a MPL on either electrode or on both electrodes also exhibited similar performance compared to when the MPL was placed at the cathode. These results indicate that the presence of MPL indeed improves the cell performance although it does not affect the net water drag coefficient. The correlation between cell performance and global water transport cannot be ascertained and warrants further experimental investigation. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:111 / 121
页数:11
相关论文
共 35 条
  • [1] Effects of the cathode gas diffusion layer characteristics on the performance of polymer electrolyte fuel cells
    Antolini, E
    Passos, RR
    Ticianelli, EA
    [J]. JOURNAL OF APPLIED ELECTROCHEMISTRY, 2002, 32 (04) : 383 - 388
  • [2] Water management in PEM fuel cells
    Berg, P
    Promislow, K
    St Pierre, J
    Stumper, J
    Wetton, B
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (03) : A341 - A353
  • [3] A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL
    BERNARDI, DM
    VERBRUGGE, MW
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) : 2477 - 2491
  • [4] WATER-BALANCE CALCULATIONS FOR SOLID-POLYMER-ELECTROLYTE FUEL-CELLS
    BERNARDI, DM
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (11) : 3344 - 3350
  • [5] Effect of water transport properties on a PEM fuel cell operating with dry hydrogen
    Cai, Yinghua
    Hu, Jun
    Ma, Haipeng
    Yi, Baolian
    Zhang, Huamin
    [J]. ELECTROCHIMICA ACTA, 2006, 51 (28) : 6361 - 6366
  • [6] Novel gas diffusion layer with water management function for PEMFC
    Chen, J
    Matsuura, T
    Hori, M
    [J]. JOURNAL OF POWER SOURCES, 2004, 131 (1-2) : 155 - 161
  • [7] Water transport in polymer membranes for PEMFC
    Choi, KH
    Peck, DH
    Kim, CS
    Shin, DR
    Lee, TH
    [J]. JOURNAL OF POWER SOURCES, 2000, 86 (1-2) : 197 - 201
  • [8] Distributed performance of polymer electrolyte fuel cells under low-humidity conditions
    Dong, Q
    Mench, MM
    Cleghorn, S
    Beuscher, U
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (11) : A2114 - A2122
  • [9] WATER AND THERMAL MANAGEMENT IN SOLID-POLYMER-ELECTROLYTE FUEL-CELLS
    FULLER, TF
    NEWMAN, J
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (05) : 1218 - 1225
  • [10] Capillary pressure and hydrophilic porosity in gas diffusion layers for polymer electrolyte fuel cells
    Gostick, Jeffrey T.
    Fowler, Michael W.
    Ioannidis, Marios A.
    Pritzker, Mark D.
    Volfkovich, Y. M.
    Sakars, A.
    [J]. JOURNAL OF POWER SOURCES, 2006, 156 (02) : 375 - 387