Fourier Truncation Regularization Method for a Time-Fractional Backward Diffusion Problem with a Nonlinear Source

被引:20
作者
Yang, Fan [1 ]
Fan, Ping [1 ]
Li, Xiao-Xiao [1 ]
Ma, Xin-Yi [1 ]
机构
[1] Lanzhou Univ Technol, Sch Sci, Lanzhou 730050, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
time-fractional diffusion problem; ill-posed problem; Fourier truncation method; error estimate; CAUCHY-PROBLEM; INVERSE PROBLEM; EQUATION;
D O I
10.3390/math7090865
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In present paper, we deal with a backward diffusion problem for a time-fractional diffusion problem with a nonlinear source in a strip domain. We all know this nonlinear problem is severely ill-posed, i.e., the solution does not depend continuously on the measurable data. Therefore, we use the Fourier truncation regularization method to solve this problem. Under an a priori hypothesis and an a priori regularization parameter selection rule, we obtain the convergence error estimates between the regular solution and the exact solution at 0 <= x<1.
引用
收藏
页数:13
相关论文
共 33 条
[1]  
[Anonymous], 1999, MATH SCI ENG
[2]   An iteration regularization for a time-fractional inverse diffusion problem [J].
Cheng, Hao ;
Fu, Chu-Li .
APPLIED MATHEMATICAL MODELLING, 2012, 36 (11) :5642-5649
[3]  
Diethelm K., 2010, LECT NOTES MATH
[4]   Fourier regularization for a backward heat equation [J].
Fu, Chu-Li ;
Xiong, Xiang-Tuan ;
Qian, Zhi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (01) :472-480
[5]   The a posteriori Fourier method for solving ill-posed problems [J].
Fu, Chu-Li ;
Zhang, Yuan-Xiang ;
Cheng, Hao ;
Ma, Yun-Jie .
INVERSE PROBLEMS, 2012, 28 (09)
[6]   The Fourier regularization for solving the Cauchy problem for the Helmholtz equation [J].
Fu, Chu-Li ;
Feng, Xiao-Li ;
Qian, Zhi .
APPLIED NUMERICAL MATHEMATICS, 2009, 59 (10) :2625-2640
[7]   Fourier regularization method for solving the surface heat flux from interior observations [J].
Fu, CL ;
Xiong, XT ;
Fu, P .
MATHEMATICAL AND COMPUTER MODELLING, 2005, 42 (5-6) :489-498
[8]   Some recent advances in theory and simulation of fractional diffusion processes [J].
Gorenflo, Rudolf ;
Mainardi, Francesco .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 229 (02) :400-415
[9]   Inverse problem for nonlinear backward space-fractional diffusion equation [J].
Hai Dinh Nguyen Duy ;
Tuan Nguyen Huy ;
Long Le Dinh ;
Gia Quoc Thong Le .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2017, 25 (04) :423-443
[10]   Blowup in solutions of a quasilinear wave equation with variable-exponent nonlinearities [J].
Messaoudi, Salim A. ;
Talahmeh, Ala A. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) :6976-6986