Dynamics of fluid vesicles in flow through structured microchannels

被引:37
作者
Noguchi, H. [1 ,2 ]
Gompper, G. [1 ]
Schmid, L. [3 ]
Wixforth, A. [3 ]
Franke, T. [3 ]
机构
[1] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany
[2] Univ Tokyo, Inst Solid State Phys, Chiba 2778581, Japan
[3] Univ Augsburg, Microfluid Grp, D-86159 Augsburg, Germany
关键词
MULTIPARTICLE COLLISION DYNAMICS; RED-BLOOD-CELLS; SHEAR-FLOW; MICROFLUIDIC DEVICE; HYDRODYNAMICS; DEFORMATION; SIMULATION; MEMBRANES; MODEL; LIFT;
D O I
10.1209/0295-5075/89/28002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dynamics of fluid vesicles is studied under flow in microchannels, in which the width varies periodically along the channel. Three types of flow instabilities of prolate vesicles are found. For small quasi-spherical vesicles-compared to the average channel width perturbation theory predicts a transition from a state with orientational oscillations of a fixed prolate shape to a state with shape oscillations of symmetrical ellipsoidal or bullet-like shapes with increasing. flow velocity. Experimentally, such orientational oscillations are observed during the slow migration of a vesicle towards the centerline of the channel. For larger vesicles, mesoscale hydrodynamics simulations and experiments show similar symmetric shape oscillation at reduced volumes V* greater than or similar to 0.9. However, for non-spherical vesicles with V* less than or similar to 0.9, shapes are found with two symmetric or a single asymmetric tail. Copyright (C) EPLA, 2010
引用
收藏
页数:6
相关论文
共 37 条
[1]   High-speed microfluidic differential manometer for cellular-scale hydrodynamics [J].
Abkarian, M ;
Faivre, M ;
Stone, HA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (03) :538-542
[2]   Tank treading and unbinding of deformable vesicles in shear flow: Determination of the lift force [J].
Abkarian, M ;
Lartigue, C ;
Viallat, A .
PHYSICAL REVIEW LETTERS, 2002, 88 (06) :4
[3]   Cellular-scale hydrodynamics [J].
Abkarian, Manouk ;
Faivre, Magalie ;
Horton, Renita ;
Smistrup, Kristian ;
Best-Popescu, Catherine A. ;
Stone, Howard A. .
BIOMEDICAL MATERIALS, 2008, 3 (03)
[4]  
Angelova M.I., 2000, Giant Vesicles, P27
[5]   Hydrodynamic lift of vesicles under shear flow in microgravity [J].
Callens, N. ;
Minetti, C. ;
Coupier, G. ;
Mader, M. -A. ;
Dubois, F. ;
Misbah, C. ;
Podgorski, T. .
EPL, 2008, 83 (02)
[6]   Noninertial lateral migration of vesicles in bounded Poiseuille flow [J].
Coupier, Gwennou ;
Kaoui, Badr ;
Podgorski, Thomas ;
Misbah, Chaouqi .
PHYSICS OF FLUIDS, 2008, 20 (11)
[7]   Vesicles in Poiseuille Flow [J].
Danker, Gerrit ;
Vlahovska, Petia M. ;
Misbah, Chaouqi .
PHYSICAL REVIEW LETTERS, 2009, 102 (14)
[8]   Two-dimensional fluctuating vesicles in linear shear flow [J].
Finken, R. ;
Lamura, A. ;
Seifert, U. ;
Gompper, G. .
EUROPEAN PHYSICAL JOURNAL E, 2008, 25 (03) :309-321
[9]   Network models of fluid, hexatic and polymerized membranes [J].
Gompper, G ;
Kroll, DM .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (42) :8795-8834
[10]   DRIVEN TRANSPORT OF FLUID VESICLES THROUGH NARROW PORES [J].
GOMPPER, G ;
KROLL, DM .
PHYSICAL REVIEW E, 1995, 52 (04) :4198-4208