Model-based Target Pharmacology Assessment (mTPA): An Approach Using PBPK/PD Modeling and Machine Learning to Design Medicinal Chemistry and DMPK Strategies in Early Drug Discovery

被引:19
作者
Chen, Emile P. [1 ]
Bondi, Robert W. [1 ]
Michalski, Paul J. [1 ]
机构
[1] GlaxoSmithKline, Computat Sci, Syst Modeling & Translat Biol, Collegeville, PA 19426 USA
关键词
PK-PD MODEL; PHARMACEUTICAL-INDUSTRY; TISSUE DISTRIBUTION; IN-SILICO; PHARMACOKINETICS; PLASMA; PREDICTION; CLEARANCE; KINETICS; BINDING;
D O I
10.1021/acs.jmedchem.0c02033
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The optimal pharmacokinetic (PK) required for a drug candidate to elicit efficacy is highly dependent on the targeted pharmacology, a relationship that is often not well characterized during early phases of drug discovery. Generic assumptions around PK and potency risk misguiding screening and compound design toward nonoptimal absorption, distribution, metabolism, and excretion (ADME) or molecular properties and ultimately may increase attrition as well as hit-to-lead and lead optimization timelines. The present work introduces model-based target pharmacology assessment (mTPA), a computational approach combining physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling, sensitivity analysis, and machine learning (ML) to elucidate the optimal combination of PK, potency, and ADME specific for the targeted pharmacology. Examples using frequently encountered PK/PD relationships are presented to illustrate its application, and the utility and benefits of deploying such an approach to guide early discovery efforts are discussed.
引用
收藏
页码:3185 / 3196
页数:12
相关论文
共 48 条
[1]   Predicting the impact of physiological and biochemical processes on oral drug bioavailability [J].
Agoram, B ;
Woltosz, WS ;
Bolger, MB .
ADVANCED DRUG DELIVERY REVIEWS, 2001, 50 :S41-S67
[2]   An integrated PK-PD model for cortisol and the 17-hydroxyprogesterone and androstenedione biomarkers in children with congenital adrenal hyperplasia [J].
Al-Kofahi, Mahmoud ;
Ahmed, Mariam A. ;
Jaber, Mutaz M. ;
Tran, Thang N. ;
Willis, Brian A. ;
Zimmerman, Cheryl L. ;
Gonzalez-Bolanos, Maria T. ;
Brundage, Richard C. ;
Sarafoglou, Kyriakie .
BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 2021, 87 (03) :1098-1110
[3]   Pharmacokinetic/pharmacodynamic modeling of the cardiovascular effects of beta blockers in humans [J].
Baek, In-hwan ;
Yun, Min-hyuk ;
Yun, Hwi-yeol ;
Kwon, Kwang-il .
ARCHIVES OF PHARMACAL RESEARCH, 2008, 31 (06) :814-821
[4]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[5]   Pharmacokinetics and Pharmacodynamics of Curcumin in regulating anti-inflammatory and epigenetic gene expression [J].
Boyanapalli, Sarandeep S. S. ;
Huang, Ying ;
Su, Zhengyuan ;
Cheng, David ;
Zhang, Chengyue ;
Guo, Yue ;
Rao, Rohit ;
Androulakis, Ioannis P. ;
Kong, Ah-Ng .
BIOPHARMACEUTICS & DRUG DISPOSITION, 2018, 39 (06) :289-297
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]   The virtue of translational PKPD modeling in drug discovery: selecting the right clinical candidate while sparing animal lives [J].
Bueters, Tjerk ;
Ploeger, Bart A. ;
Visser, Sandra A. G. .
DRUG DISCOVERY TODAY, 2013, 18 (17-18) :853-862
[8]   Strategic Use of Plasma and Microsome Binding To Exploit in Vitro Clearance in Early Drug Discovery [J].
Chang, George ;
Steyn, Stefanus J. ;
Umland, John P. ;
Scott, Dennis O. .
ACS MEDICINAL CHEMISTRY LETTERS, 2010, 1 (02) :50-53
[9]   In silico prediction of unbound brain-to-plasma concentration ratio using machine learning algorithms [J].
Chen, Hongming ;
Winiwarter, Susanne ;
Friden, Markus ;
Antonsson, Madeleine ;
Engkvist, Ola .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2011, 29 (08) :985-995
[10]   Application of IVIVE and PBPK modeling in prospective prediction of clinical pharmacokinetics: strategy and approach during the drug discovery phase with four case studies [J].
Chen, Yuan ;
Jin, Jin Y. ;
Mukadam, Sophie ;
Malhi, Vikram ;
Kenny, Jane R. .
BIOPHARMACEUTICS & DRUG DISPOSITION, 2012, 33 (02) :85-98