Energy-critical Hartree equation with harmonic potential for radial data

被引:2
作者
Wu, Haigen [1 ,2 ]
Zhang, Junyong [2 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Henan Province, Peoples R China
[2] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
关键词
Hartree equation; Harmonic potential; Galilean operator; Decay estimate; Scattering theory; NONLINEAR SCHRODINGER-EQUATIONS; GLOBAL WELL-POSEDNESS; SCATTERING; DECAY;
D O I
10.1016/j.na.2009.11.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the defocusing, energy-critical Hartree equation with harmonic potential for the radial data in all dimensions (n >= 5) and show the global well-posedness and scattering theory in the space Sigma = H(1)boolean AND FH(1). We take advantage of some symmetry of the Hartree nonlinearity to exploit the derivative-like properties of the Galilean operators and obtain the energy control as well. Based on Bourgain and Tao's approach, we use a localized Morawetz identity to show the global well-posedness. A key decay estimate comes from the linear part of the energy rather than the nonlinear part, which finally helps us to complete the scattering theory. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2821 / 2840
页数:20
相关论文
共 22 条
[1]   Scattering in the energy space and below for 3D NLS [J].
Bourgain, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1998, 75 (1) :267-297
[2]   Nonlinear Schrodinger equations with repulsive harmonic potential and applications [J].
Carles, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (04) :823-843
[3]   Remarks on nonlinear Schrodinger equations with harmonic potential [J].
Carles, R .
ANNALES HENRI POINCARE, 2002, 3 (04) :757-772
[4]  
CAZENAVE T, 2003, COURANT LECT NOTES M, V110
[5]  
Folland G.B., 1989, Annals of Mathematics Studies
[6]   CLASS OF NON-LINEAR SCHRODINGER-EQUATIONS WITH NON LOCAL INTERACTION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1980, 170 (02) :109-136
[7]  
Ginibre J., 2000, Contemp. Math., V263, P29
[8]  
HAYASHI N, 1987, ANN I H POINCARE-PHY, V46, P187
[9]   Endpoint Strichartz estimates [J].
Keel, M ;
Tao, T .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (05) :955-980
[10]   Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrodinger equation in the radial case [J].
Kenig, Carlos E. ;
Merle, Frank .
INVENTIONES MATHEMATICAE, 2006, 166 (03) :645-675