Lie Symmetry Analysis of the Time Fractional Generalized KdV Equations with Variable Coefficients

被引:7
作者
Chen, Cheng [1 ]
Jiang, Yao-Lin [2 ]
Wang, Xiao-Tian [3 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Sci, Xian 710121, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[3] Xian Univ Posts & Telecommun, Sch Elect Engn, Xian 710121, Shaanxi, Peoples R China
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 10期
关键词
infinitesimal operator; Riemann-Liouville derivative; initial and boundary value; Erdelyi-Kober operator;
D O I
10.3390/sym11101281
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The group classification of a class of time fractional generalized KdV equations with variable coefficient is presented. The Lie symmetry analysis method is extended to the certain subclasses of time fractional generalized KdV equations with initial and boundary values. Under the corresponding similarity transformation with similarity invariants, KdV equations with initial and boundary values have been transformed into fractional ordinary differential equations with initial value. Then we use the power series method to obtain the exact solution of the reduced equation with the Erdelyi-Kober fractional differential operator.
引用
收藏
页数:15
相关论文
共 25 条
[1]   A THEORETICAL BASIS FOR THE APPLICATION OF FRACTIONAL CALCULUS TO VISCOELASTICITY [J].
BAGLEY, RL ;
TORVIK, PJ .
JOURNAL OF RHEOLOGY, 1983, 27 (03) :201-210
[2]   Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation [J].
Baleanu, Dumitru ;
Inc, Mustafa ;
Yusuf, Abdullahi ;
Aliyu, Aliyu Isa .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 :222-234
[3]  
Bluman G.W., 2013, SYMMETRIES DIFFERENT
[4]  
Carpinteri A., 1997, CISM International Centre for Mechanical Sciences, V378
[5]   Lie Group Analysis and Invariant Solutions for Nonlinear Time-Fractional Diffusion-Convection Equations [J].
Chen, Cheng ;
Jiang, Yao-Lin .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2017, 68 (03) :295-300
[6]   Lie group analysis method for two classes of fractional partial differential equations [J].
Chen, Cheng ;
Jiang, Yao-Lin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 26 (1-3) :24-35
[7]  
Diethelm K., 2010, LECT NOTES MATH, V265, P229
[8]   Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: Anew iterative algorithm [J].
El-Ajou, Ahmad ;
Abu Arqub, Omar ;
Momani, Shaher .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :81-95
[9]  
Fung MK, 1997, CHINESE J PHYS, V35, P789
[10]   Group-Invariant Solutions of Fractional Differential Equations [J].
Gazizov, R. K. ;
Kasatkin, A. A. ;
Lukashchuk, S. Y. .
NONLINEAR SCIENCE AND COMPLEXITY, 2011, :51-59