Uncertainty decomposition of quantum networks in SLH framework

被引:2
作者
Azodi, Peyman [1 ]
Setoodeh, Peyman [1 ]
Khayatian, Alireza [1 ]
Asemani, Mohammad Hassan [1 ]
机构
[1] Shiraz Univ, Sch Elect & Comp Engn, Shiraz 7194684471, Iran
关键词
coherent control; linear quantum input-output networks; robust analysis; H-INFINITY CONTROL; SYSTEMS; OUTPUT; INPUT;
D O I
10.1002/rnc.4740
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a systematic method to decompose uncertain linear quantum input-output networks into uncertain and nominal subnetworks, when uncertainties are defined in SLH representation. To this aim, two decomposition theorems are stated, which show how an uncertain quantum network can be decomposed into nominal and uncertain subnetworks in cascaded connection and how uncertainties can be translated from SLH parameters into state-space parameters. As a potential application of the proposed decomposition scheme, robust stability analysis of uncertain quantum networks is briefly introduced. The proposed uncertainty decomposition theorems take account of uncertainties in all three parameters of a quantum network and bridge the gap between SLH modeling and state-space robust analysis theory for linear quantum networks.
引用
收藏
页码:6542 / 6554
页数:13
相关论文
共 23 条
[1]  
Azodi P, 2016, ARXIV160907947
[2]  
Azodi P, 2017, P 2017 IR C EL ENG I
[3]   Stochastic boundedness of state trajectories of stable LTI systems in the presence of non-vanishing stochastic perturbation [J].
Azodi, Peyman ;
Setoodeh, Peyman ;
Khayatian, Alireza ;
Jamalinia, Elham .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2020, 37 (03) :718-729
[4]   QUANTUM STOCHASTIC CALCULUS AND QUANTUM NONLINEAR FILTERING [J].
BELAVKIN, VP .
JOURNAL OF MULTIVARIATE ANALYSIS, 1992, 42 (02) :171-201
[5]   The SLH framework for modeling quantum input-output networks [J].
Combes, Joshua ;
Kerckhoff, Joseph ;
Sarovar, Mohan .
ADVANCES IN PHYSICS-X, 2017, 2 (03) :784-888
[6]   Input-output theory for superconducting and photonic circuits that contain weak retroreflections and other weak pseudocavities [J].
Cook, Robert ;
Schuster, David, I ;
Cleland, Andrew N. ;
Jacobs, Kurt .
PHYSICAL REVIEW A, 2018, 98 (01)
[7]   Stability, gain, and robustness in quantum feedback networks [J].
D'Helon, C. ;
James, M. R. .
PHYSICAL REVIEW A, 2006, 73 (05)
[8]   Quantum control theory and applications: a survey [J].
Dong, D. ;
Petersen, I. R. .
IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (12) :2651-2671
[9]   INPUT AND OUTPUT IN DAMPED QUANTUM-SYSTEMS - QUANTUM STOCHASTIC DIFFERENTIAL-EQUATIONS AND THE MASTER EQUATION [J].
GARDINER, CW ;
COLLETT, MJ .
PHYSICAL REVIEW A, 1985, 31 (06) :3761-3774
[10]   Squeezing components in linear quantum feedback networks [J].
Gough, J. E. ;
James, M. R. ;
Nurdin, H. I. .
PHYSICAL REVIEW A, 2010, 81 (02)