DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing

被引:181
|
作者
Xue, Chaoyou [1 ,2 ]
Greene, Eric C. [1 ]
机构
[1] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10032 USA
[2] Chinese Acad Sci, Tianjin Inst Ind Biotechnol, Tianjin, Peoples R China
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
DOUBLE-STRAND BREAKS; HOMOLOGY-DIRECTED REPAIR; MOLECULE IMAGING REVEALS; RNA-GUIDED ENDONUCLEASE; END RESECTION; CRISPR-CAS; OFF-TARGET; POLY(ADP-RIBOSE) POLYMERASE-1; HALOFERAX-MEDITERRANEI; EXONUCLEASE ACTIVITY;
D O I
10.1016/j.tig.2021.02.008
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Many clustered regularly interspaced short palindromic repeats (CRISPR)CRISPR-associated protein 9 (Cas9)-based genome editing technologies take advantage of Cas nucleases to induce DNA double-strand breaks (DSBs) at desired locations within a genome. Further processing of the DSBs by the cellular DSB repair machinery is then necessary to introduce desired mutations, sequence insertions, or gene deletions. Thus, the accuracy and efficiency of genome editing are influenced by the cellular DSB repair pathways. DSBs are themselves highly genotoxic lesions and as such cells have evolved multiple mechanisms for their repair. These repair pathways include homologous recombination (HR), classical nonhomologous end joining (cNHEJ), microhomology-mediated end joining (MMEJ) and single-strand annealing (SSA). In this review, we briefly highlight CRISPR-Cas9 and then describe the mechanisms of DSB repair. Finally, we summarize recent findings of factors that can influence the choice of DNA repair pathway in response to Cas9-induced DSBs.
引用
收藏
页码:639 / 656
页数:18
相关论文
共 50 条
  • [31] CRISPR/Cas mediated base editing: a practical approach for genome editing in oil palm
    Rajesh Yarra
    Hongxing Cao
    Longfei Jin
    Yang Mengdi
    Lixia Zhou
    3 Biotech, 2020, 10
  • [32] Insights into maize genome editing via CRISPR/Cas9
    Agarwal, Astha
    Yadava, Pranjal
    Kumar, Krishan
    Singh, Ishwar
    Kaul, Tanushri
    Pattanayak, Arunava
    Agrawal, Pawan Kumar
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2018, 24 (02) : 175 - 183
  • [33] Strategies for Efficient Genome Editing Using CRISPR-Cas9
    Farboud, Behnom
    Severson, Aaron F.
    Meyer, Barbara J.
    GENETICS, 2019, 211 (02) : 431 - 457
  • [34] CRISPR-Cas9: from Genome Editing to Cancer Research
    Chen, Si
    Sun, Heng
    Miao, Kai
    Deng, Chu-Xia
    INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2016, 12 (12): : 1427 - 1436
  • [35] Exploring the potential of genome editing CRISPR-Cas9 technology
    Singh, Vijai
    Braddick, Darren
    Dhar, Pawan Kumar
    GENE, 2017, 599 : 1 - 18
  • [36] Application of CRISPR/Cas9-based genome editing in ecotoxicology
    Zhao, Fang
    Ding, Xiaofan
    Liu, Zimeng
    Yan, Xiao
    Chen, Yanzhen
    Jiang, Yaxin
    Chen, Shunjie
    Wang, Yuanfang
    Kang, Tingting
    Xie, Chun
    He, Mian
    Zheng, Jing
    ENVIRONMENTAL POLLUTION, 2023, 336
  • [37] The CRISPR/Cas9 system for plant genome editing and beyond
    Bortesi, Luisa
    Fischer, Rainer
    BIOTECHNOLOGY ADVANCES, 2015, 33 (01) : 41 - 52
  • [38] CRISPR/Cas9 genome editing approaches for psychiatric research
    Gutierrez-Rodriguez, Araceli
    Cruz-Fuentes, Carlos S.
    Genis-Mendoza, Alma D.
    Nicolini, Humberto
    BRAZILIAN JOURNAL OF PSYCHIATRY, 2023, 45 (02) : 137 - 145
  • [39] Editing the human cytomegalovirus genome with the CRISPR/Cas9 system
    King, Melvin W.
    Munger, Joshua
    VIROLOGY, 2019, 529 : 186 - 194
  • [40] CRISPR/Cas9Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development
    Okoli, Arinze
    Okeke, Malachy I.
    Tryland, Morten
    Moens, Ugo
    VIRUSES-BASEL, 2018, 10 (01):