DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing

被引:181
|
作者
Xue, Chaoyou [1 ,2 ]
Greene, Eric C. [1 ]
机构
[1] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10032 USA
[2] Chinese Acad Sci, Tianjin Inst Ind Biotechnol, Tianjin, Peoples R China
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
DOUBLE-STRAND BREAKS; HOMOLOGY-DIRECTED REPAIR; MOLECULE IMAGING REVEALS; RNA-GUIDED ENDONUCLEASE; END RESECTION; CRISPR-CAS; OFF-TARGET; POLY(ADP-RIBOSE) POLYMERASE-1; HALOFERAX-MEDITERRANEI; EXONUCLEASE ACTIVITY;
D O I
10.1016/j.tig.2021.02.008
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Many clustered regularly interspaced short palindromic repeats (CRISPR)CRISPR-associated protein 9 (Cas9)-based genome editing technologies take advantage of Cas nucleases to induce DNA double-strand breaks (DSBs) at desired locations within a genome. Further processing of the DSBs by the cellular DSB repair machinery is then necessary to introduce desired mutations, sequence insertions, or gene deletions. Thus, the accuracy and efficiency of genome editing are influenced by the cellular DSB repair pathways. DSBs are themselves highly genotoxic lesions and as such cells have evolved multiple mechanisms for their repair. These repair pathways include homologous recombination (HR), classical nonhomologous end joining (cNHEJ), microhomology-mediated end joining (MMEJ) and single-strand annealing (SSA). In this review, we briefly highlight CRISPR-Cas9 and then describe the mechanisms of DSB repair. Finally, we summarize recent findings of factors that can influence the choice of DNA repair pathway in response to Cas9-induced DSBs.
引用
收藏
页码:639 / 656
页数:18
相关论文
共 50 条
  • [21] CRISPR/Cas9-Mediated Genome Editing of Herpesviruses Limits Productive and Latent Infections
    van Diemen, Ferdy R.
    Kruse, Elisabeth M.
    Hooykaas, Marjolein J. G.
    Bruggeling, Carlijn E.
    Schurch, Anita C.
    van Ham, Petra M.
    Imhof, Saskia M.
    Nijhuis, Monique
    Wiertz, Emmanuel J. H. J.
    Lebbink, Robert Jan
    PLOS PATHOGENS, 2016, 12 (06)
  • [22] Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing
    Robert, Francis
    Barbeau, Mathilde
    Ethier, Sylvain
    Dostie, Josee
    Pelletier, Jerry
    GENOME MEDICINE, 2015, 7
  • [23] Targeted genome editing in Caenorhabditis elegans using CRISPR/Cas9
    Farboud, Behnom
    WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY, 2017, 6 (06)
  • [24] Comparative analysis of lipid-mediated CRISPR-Cas9 genome editing techniques
    Ringer, Kelsey P.
    Roth, Mark G.
    Garey, Mitchell S.
    Piorczynski, Ted B.
    Suli, Arminda
    Hansen, Jason M.
    Alder, Jonathan K.
    CELL BIOLOGY INTERNATIONAL, 2018, 42 (07) : 849 - 858
  • [25] CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells
    Bloomer, Hanan
    Khirallah, Jennifer
    Li, Yamin
    Xu, Qiaobing
    ADVANCED DRUG DELIVERY REVIEWS, 2022, 181
  • [26] Recruitment of DNA Repair MRN Complex by Intrinsically Disordered Protein Domain Fused to Cas9 Improves Efficiency of CRISPR-Mediated Genome Editing
    Reuven, Nina
    Adler, Julia
    Broennimann, Karin
    Myers, Nadav
    Shaul, Yosef
    BIOMOLECULES, 2019, 9 (10)
  • [27] Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing
    Zhang, Song
    Shen, Jiangtao
    Li, Dali
    Cheng, Yiyun
    THERANOSTICS, 2021, 11 (02): : 614 - 648
  • [28] CRISPR-based genome editing through the lens of DNA repair
    Nambiar, Tarun S.
    Baudrier, Lou
    Billon, Pierre
    Ciccia, Alberto
    MOLECULAR CELL, 2022, 82 (02) : 348 - 388
  • [29] CRISPR-Cas9: A revolution in genome editing in rheumatic diseases
    Duroux-Richard, Isabelle
    Giovannangeli, Carine
    Apparailly, Florence
    JOINT BONE SPINE, 2017, 84 (01) : 1 - 4
  • [30] CRISPR/Cas9 for genome editing: progress, implications and challenges
    Zhang, Feng
    Wen, Yan
    Guo, Xiong
    HUMAN MOLECULAR GENETICS, 2014, 23 : R40 - R46