Semantic 3D Mapping from Deep Image Segmentation

被引:1
作者
Martin, Francisco [1 ]
Gonzalez, Fernando [1 ]
Guerrero, Jose Miguel [1 ]
Fernandez, Manuel [1 ]
Gines, Jonatan [2 ]
机构
[1] Univ Rey Juan Carlos, Intelligent Robot Lab, Fuenlabrada 28943, Spain
[2] Rey Juan Carlos Univ, Escuela Int Doctorado, Mostoles 28933, Spain
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 04期
关键词
image segmentation; deep learning; 3D semantic mapping;
D O I
10.3390/app11041953
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The perception and identification of visual stimuli from the environment is a fundamental capacity of autonomous mobile robots. Current deep learning techniques make it possible to identify and segment objects of interest in an image. This paper presents a novel algorithm to segment the object's space from a deep segmentation of an image taken by a 3D camera. The proposed approach solves the boundary pixel problem that appears when a direct mapping from segmented pixels to their correspondence in the point cloud is used. We validate our approach by comparing baseline approaches using real images taken by a 3D camera, showing that our method outperforms their results in terms of accuracy and reliability. As an application of the proposed algorithm, we present a semantic mapping approach for a mobile robot's indoor environments.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 31 条
[1]  
BENTLEY JL, 1990, PROCEEDINGS OF THE SIXTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY, P187, DOI 10.1145/98524.98564
[2]  
Berrio JS, 2018, IEEE INT C INT ROBOT, P3174, DOI 10.1109/IROS.2018.8594024
[3]   YOLACT Real-time Instance Segmentation [J].
Bolya, Daniel ;
Zhou, Chong ;
Xiao, Fanyi ;
Lee, Yong Jae .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9156-9165
[4]  
Bowman Sean L., 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA), P1722, DOI 10.1109/ICRA.2017.7989203
[5]  
Farhadi A., P 2017 IEEE C COMP V, P6517
[6]  
Furrer F, 2018, IEEE INT C INT ROBOT, P6835, DOI 10.1109/IROS.2018.8594391
[7]  
Grinvald M., 2018, ROS WRAPPER DEEPLAB
[8]   Volumetric Instance-Aware Semantic Mapping and 3D Object Discovery [J].
Grinvald, Margarita ;
Furrer, Fadri ;
Novkovic, Tonci ;
Chung, Jen Jen ;
Cadena, Cesar ;
Siegwart, Roland ;
Nieto, Juan .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (03) :3037-3044
[9]  
Hazirbas C., 2016, P AS C COMP VIS TAIP
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778