Estimation of the number of harmonics in multiplicative and additive noise

被引:13
作者
Yang, Shiyong [1 ]
Li, Hongwei [1 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
estimation of the number of harmonics; enhanced matrix; harmonic retrieval; multiplicative noise; eigenvalue;
D O I
10.1016/j.sigpro.2006.10.011
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a method for estimating the number of harmonics in multiplicative and additive noise using enhanced matrix. We construct an enhanced matrix from the data samples, and then analyze the eigenvalues of the covariance matrix of the enhanced matrix. The number of harmonics in multiplicative and additive noise is inherent with the eigenvalues and it can be estimated using the special property of the eigenvalues. The proposed method avoids the peaks searching and does not assume the distribution and color of the multiplicative and additive noise. Simulation results are presented to demonstrate the effectiveness of the proposed algorithm. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1128 / 1137
页数:10
相关论文
共 20 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]   HARMONIC RETRIEVAL USING HIGHER-ORDER STATISTICS - A DETERMINISTIC FORMULATION [J].
ANDERSON, JMM ;
GIANNAKIS, GB ;
SWAMI, A .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (08) :1880-1889
[3]   SVD ANALYSIS BY SYNTHESIS OF HARMONIC SIGNALS [J].
BAKAMIDIS, S ;
DENDRINOS, M ;
CARAYANNIS, G .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (02) :472-477
[4]   ON ESTIMATING THE FREQUENCY OF A SINUSOID IN AUTOREGRESSIVE MULTIPLICATIVE NOISE [J].
BESSON, O ;
CASTANIE, F .
SIGNAL PROCESSING, 1993, 30 (01) :65-83
[5]   Accurate frequency estimation for real harmonic sinusoids [J].
Chan, KW ;
So, HC .
IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (07) :609-612
[6]   Performance analysis of cyclic statistics for the estimation of harmonics in multiplicative and additive noise [J].
Ghogho, M ;
Swami, A ;
Garel, B .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (12) :3235-3249
[7]   HARMONICS IN MULTIPLICATIVE AND ADDITIVE NOISE - PARAMETER-ESTIMATION USING CYCLIC STATISTICS [J].
GIANNAKIS, GB ;
ZHOU, GT .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (09) :2217-2221
[8]  
Horn R. A., 1986, Matrix analysis
[9]  
HUA Y, 1991, IEEE T SIGNAL PROCES, V40, P2267
[10]   Wavelet packets-based high-resolution spectral estimation [J].
Lambrecht, CV ;
Karrakchou, M .
SIGNAL PROCESSING, 1995, 47 (02) :135-144