Asymptotic Equivalence and Contiguity of Some Random Graphs

被引:40
作者
Janson, Svante [1 ]
机构
[1] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
关键词
contiguity; asymptotic equivalence; random graphs; Hellinger distance;
D O I
10.1002/rsa.20297
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We show that asymptotic equivalence, in a strong form, holds between two random graph models with slightly differing edge probabilities under substantially weaker conditions than what might naively be expected. One application is a simple proof of a recent result by van den Esker, van der Hofstad, and Hooghiemstra on the equivalence between graph distances for some random graph models. (C) 2009 Wiley Periodicals, Inc. Random Struct. Alg., 36, 26-45, 2010
引用
收藏
页码:26 / 45
页数:20
相关论文
共 17 条
  • [1] [Anonymous], 2007, Random Graph Dynamics
  • [2] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    [J]. SCIENCE, 1999, 286 (5439) : 509 - 512
  • [3] Barbour A.D., 1992, Poisson approximation
  • [4] BOLLOBAS B, SPARSE RAND IN PRESS
  • [5] The phase transition in inhomogeneous random graphs
    Bollobas, Bela
    Janson, Svante
    Riordan, Oliver
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2007, 31 (01) : 3 - 122
  • [6] Generating simple random graphs with prescribed degree distribution
    Britton, Tom
    Deijfen, Maria
    Martin-Loeff, Anders
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2006, 124 (06) : 1377 - 1397
  • [7] DURRETT R, 2003, P DISCR RAND WALKS 2, P95
  • [8] Permutation pseudographs and contiguity
    Greenhill, C
    Janson, S
    Kim, JH
    Wormald, NC
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (03) : 273 - 298
  • [9] Jacod J., 2003, Limit Theorems of Stochastic Processes, V2
  • [10] JANSON S, 2000, WIL INT S D, pR5, DOI 10.1002/9781118032718