Quantum intermittency for sparse CMV matrices with an application to quantum walks on the half-line

被引:8
作者
Damanik, David [1 ]
Erickson, Jon [1 ]
Fillman, Jake [1 ]
Hinkle, Gerhardt [1 ]
Vu, Alan [1 ]
机构
[1] Rice Univ, Dept Math, Houston, TX 77005 USA
关键词
Quantum walks; CMV matrices; Unitary dynamics; ORTHOGONAL POLYNOMIALS; UNIT-CIRCLE; CGMV METHOD; SCHRODINGER-OPERATORS; LOCALIZATION; LATTICE;
D O I
10.1016/j.jat.2016.04.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the dynamics given by the iteration of a (half-line) CMV matrix with sparse, high barriers. Using an approach of Tcheremchantsev, we are able to explicitly compute the transport exponents for this model in terms of the given parameters. In light of the connection between CMV matrices and quantum walks on the half-line due to Cantero-Grtinbaum-Moral-Velazquez, our result also allows us to compute transport exponents corresponding to a quantum walk which is sparsely populated with strong reflectors. To the best of our knowledge, this provides the first rigorous example of a quantum walk that exhibits quantum intermittency, i.e., nonconstancy of the transport exponents. When combined with the CMV version of the Jitomirskaya-Last theory of subordinacy and the general discrete-time dynamical bounds from Damanik-Fillman-Vance, we are able to exactly compute the Hausdorff dimension of the associated spectral measure. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:59 / 84
页数:26
相关论文
共 21 条
[1]   Asymptotic evolution of quantum walks with random coin [J].
Ahlbrecht, A. ;
Vogts, H. ;
Werner, A. H. ;
Werner, R. F. .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (04)
[2]   Quantum Recurrence of a Subspace and Operator-Valued Schur Functions [J].
Bourgain, J. ;
Gruenbaum, F. A. ;
Velazquez, L. ;
Wilkening, J. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 329 (03) :1031-1067
[3]   The CGMV method for quantum walks [J].
Cantero, M. J. ;
Gruenbaum, F. A. ;
Moral, L. ;
Velazquez, L. .
QUANTUM INFORMATION PROCESSING, 2012, 11 (05) :1149-1192
[4]  
Cantero MJ, 2010, COMMUN PUR APPL MATH, V63, P464
[5]   Spreading estimates for quantum walks on the integer lattice via power-law bounds on transfer matrices [J].
Damanik, David ;
Fillman, Jake ;
Ong, Darren C. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 105 (03) :293-341
[6]   Dynamics of unitary operators [J].
Damanik, David ;
Fillman, Jake ;
Vance, Robert .
JOURNAL OF FRACTAL GEOMETRY, 2014, 1 (04) :391-425
[7]   Orthogonal Polynomials on the Unit Circle with Fibonacci Verblunsky Coefficients, II. Applications [J].
Damanik, David ;
Munger, Paul ;
Yessen, William N. .
JOURNAL OF STATISTICAL PHYSICS, 2013, 153 (02) :339-362
[8]   A GENERAL DESCRIPTION OF QUANTUM DYNAMICAL SPREADING OVER AN ORTHONORMAL BASIS AND APPLICATIONS TO SCHRODINGER OPERATORS [J].
Damanik, David ;
Tcheremchantsev, Serguei .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (04) :1381-1412
[9]   Weyl-Titchmarsh theory for CMV operators associated with orthogonal polynomials on the unit circle [J].
Gesztesy, F ;
Zinchenko, M .
JOURNAL OF APPROXIMATION THEORY, 2006, 139 (1-2) :172-213
[10]   Power-law subordinacy and singular spectra I. Half-line operators [J].
Jitomirskaya, S ;
Last, Y .
ACTA MATHEMATICA, 1999, 183 (02) :171-189