Noncured Graphene Thermal Interface Materials for High-Power Electronics: Minimizing the Thermal Contact Resistance

被引:28
作者
Sudhindra, Sriharsha [1 ]
Kargar, Fariborz [1 ]
Balandin, Alexander A. [1 ]
机构
[1] Univ Calif Riverside, Phonon Optimized Engn Mat Ctr, Dept Elect & Comp Engn, Riverside, CA 92521 USA
关键词
surface roughness; thermal contact resistance; thermal conductivity; graphene; silicone oil; thermal interface materials; EPOXY COMPOSITE; CONDUCTIVITY; NANOCOMPOSITES; TEMPERATURE; PERFORMANCE; MANAGEMENT; TRANSPORT; FUTURE;
D O I
10.3390/nano11071699
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report on experimental investigation of thermal contact resistance, R-C, of the noncuring graphene thermal interface materials with the surfaces characterized by different degree of roughness, S-q. It is found that the thermal contact resistance depends on the graphene loading, xi, non-monotonically, achieving its minimum at the loading fraction of xi similar to 15 wt%. Decreasing the surface roughness by S-q similar to 1 mu m results in approximately the factor of x2 decrease in the thermal contact resistance for this graphene loading. The obtained dependences of the thermal conductivity, K-TIM, thermal contact resistance, R-C, and the total thermal resistance of the thermal interface material layer on xi and S-q can be utilized for optimization of the loading fraction of graphene for specific materials and roughness of the connecting surfaces. Our results are important for the thermal management of high-power-density electronics implemented with diamond and other wide-band-gap semiconductors.
引用
收藏
页数:13
相关论文
共 70 条
[11]   Thermal Properties of the Binary-Filler Hybrid Composites with Graphene and Copper Nanoparticles [J].
Barani, Zahra ;
Mohammadzadeh, Amirmahdi ;
Geremew, Adane ;
Huang, Chun-Yu ;
Coleman, Devin ;
Mangolini, Lorenzo ;
Kargar, Fariborz ;
Balandin, Alexander A. .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (08)
[12]   Review of Thermal Packaging Technologies for Automotive Power Electronics for Traction Purposes [J].
Broughton, Justin ;
Smet, Vanessa ;
Tummala, Rao R. ;
Joshi, Yogendra K. .
JOURNAL OF ELECTRONIC PACKAGING, 2018, 140 (04)
[13]  
Burzo MG, 2013, P IEEE SEMICOND THER, P194, DOI 10.1109/SEMI-THERM.2013.6526828
[14]   Support-Material-Free Microfluidics on an Electrochemical Sensors Platform by Aerosol Jet Printing [J].
Di Novo, Nicolo Giuseppe ;
Cantu, Edoardo ;
Tonello, Sarah ;
Sardini, Emilio ;
Serpelloni, Mauro .
SENSORS, 2019, 19 (08)
[15]   A Multiscale Investigation on the Thermal Transport in Polydimethylsiloxane Nanocomposites: Graphene vs. Borophene [J].
Di Pierro, Alessandro ;
Mortazavi, Bohayra ;
Noori, Hamidreza ;
Rabczuk, Timon ;
Fina, Alberto .
NANOMATERIALS, 2021, 11 (05)
[16]   Graphene nanocomposites as thermal interface materials for cooling energy devices [J].
Dmitriev, A. S. ;
Valeev, A. R. .
INTERNATIONAL CONFERENCE PROBLEMS OF THERMAL PHYSICS AND POWER ENGINEERING (PTPPE-2017), 2017, 891
[17]   Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids [J].
Evans, William ;
Prasher, Ravi ;
Fish, Jacob ;
Meakin, Paul ;
Phelan, Patrick ;
Keblinski, Pawel .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (5-6) :1431-1438
[18]  
Faili F.N., 2009, Diam. Tool. J., V1, P52
[19]   Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors [J].
Ferain, Isabelle ;
Colinge, Cynthia A. ;
Colinge, Jean-Pierre .
NATURE, 2011, 479 (7373) :310-316
[20]   Graphene related materials for thermal management [J].
Fu, Yifeng ;
Hansson, Josef ;
Liu, Ya ;
Chen, Shujing ;
Zehri, Abdelhafid ;
Samani, Majid Kabiri ;
Wang, Nan ;
Ni, Yuxiang ;
Zhang, Yan ;
Zhang, Zhi-Bin ;
Wang, Qianlong ;
Li, Mengxiong ;
Lu, Hongbin ;
Sledzinska, Marianna ;
Sotomayor Torres, Clivia M. ;
Volz, Sebastian ;
Balandin, Alexander A. ;
Xu, Xiangfan ;
Liu, Johan .
2D MATERIALS, 2020, 7 (01)