Noncured Graphene Thermal Interface Materials for High-Power Electronics: Minimizing the Thermal Contact Resistance

被引:28
作者
Sudhindra, Sriharsha [1 ]
Kargar, Fariborz [1 ]
Balandin, Alexander A. [1 ]
机构
[1] Univ Calif Riverside, Phonon Optimized Engn Mat Ctr, Dept Elect & Comp Engn, Riverside, CA 92521 USA
关键词
surface roughness; thermal contact resistance; thermal conductivity; graphene; silicone oil; thermal interface materials; EPOXY COMPOSITE; CONDUCTIVITY; NANOCOMPOSITES; TEMPERATURE; PERFORMANCE; MANAGEMENT; TRANSPORT; FUTURE;
D O I
10.3390/nano11071699
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report on experimental investigation of thermal contact resistance, R-C, of the noncuring graphene thermal interface materials with the surfaces characterized by different degree of roughness, S-q. It is found that the thermal contact resistance depends on the graphene loading, xi, non-monotonically, achieving its minimum at the loading fraction of xi similar to 15 wt%. Decreasing the surface roughness by S-q similar to 1 mu m results in approximately the factor of x2 decrease in the thermal contact resistance for this graphene loading. The obtained dependences of the thermal conductivity, K-TIM, thermal contact resistance, R-C, and the total thermal resistance of the thermal interface material layer on xi and S-q can be utilized for optimization of the loading fraction of graphene for specific materials and roughness of the connecting surfaces. Our results are important for the thermal management of high-power-density electronics implemented with diamond and other wide-band-gap semiconductors.
引用
收藏
页数:13
相关论文
共 70 条
[1]   3D optical surface profiler for quantifying leaf surface roughness [J].
Abbott, JohnPaul R. ;
Zhu, Heping .
SURFACE TOPOGRAPHY-METROLOGY AND PROPERTIES, 2019, 7 (04)
[2]  
Aengel YA., 2004, HEAT TRANSFER PRACTI
[3]  
Amalu E. H., 2009, 2009 2nd International Conference on Adaptive Science & Technology (ICAST 2009), P146, DOI 10.1109/ICASTECH.2009.5409731
[4]   Study on thermal performance of high power LED employing aluminum filled epoxy composite as thermal interface material [J].
Anithambigai, P. ;
Shanmugan, S. ;
Mutharasu, D. ;
Zahner, T. ;
Lacey, D. .
MICROELECTRONICS JOURNAL, 2014, 45 (12) :1726-1733
[5]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[6]   Phononics of Graphene and Related Materials [J].
Balandin, Alexander A. .
ACS NANO, 2020, 14 (05) :5170-5178
[7]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/NMAT3064, 10.1038/nmat3064]
[8]   Nanothermal Interface Materials: Technology Review and Recent Results [J].
Bar-Cohen, Avram ;
Matin, Kaiser ;
Narumanchi, Sreekant .
JOURNAL OF ELECTRONIC PACKAGING, 2015, 137 (04)
[9]   Two-Phase Thermal Ground Planes: Technology Development and Parametric Results [J].
Bar-Cohen, Avram ;
Matin, Kaiser ;
Jankowski, Nicholas ;
Sharar, Darin .
JOURNAL OF ELECTRONIC PACKAGING, 2015, 137 (01)
[10]   Multifunctional Graphene Composites for Electromagnetic Shielding and Thermal Management at Elevated Temperatures [J].
Barani, Zahra ;
Kargar, Fariborz ;
Mohammadzadeh, Amirmahdi ;
Naghibi, Sahar ;
Lo, Carissa ;
Rivera, Brandon ;
Balandin, Alexander A. .
ADVANCED ELECTRONIC MATERIALS, 2020, 6 (11)