GREENBERG?S CONJECTURE FOR REAL QUADRATIC FIELDS AND THE CYCLOTOMIC Z2-EXTENSIONS

被引:2
作者
Pagani, Lorenzo [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, Piazzale Aldo Moro 5, I-00185 Rome, Italy
关键词
INVARIANT; UNITS;
D O I
10.1090/mcom/3712
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A(n) be the 2-part of the ideal class group of the n-th layer of the cyclotomic Z(2)-extension of a real quadratic number field F. The cardinality of A(n) is related to the index of cyclotomic units in the full group of units. We present a method to study the latter index. As an application we show that the sequence of the A(n)'s stabilizes for the real fields F = Q(root f) for any integer 0 < f < 10000. Equivalently Greenberg's conjecture holds for those fields.
引用
收藏
页码:1437 / 1467
页数:31
相关论文
共 19 条
[1]  
Chevalley C, 1934, THEORIE CORPS CLASSE
[2]   Anderson's module for cyclotomic fields of prime conductor [J].
Cornacchia, P .
JOURNAL OF NUMBER THEORY, 1997, 67 (02) :252-276
[3]   IWASAWA INVARIANT MU-P VANISHES FOR ABELIAN NUMBER FIELDS [J].
FERRERO, B ;
WASHINGTON, LC .
ANNALS OF MATHEMATICS, 1979, 109 (02) :377-395
[4]   REMARKS OF Z(P)-EXTENSIONS OF NUMBER-FIELDS [J].
FUKUDA, T .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1994, 70 (08) :264-266
[5]   Cyclotomic units and Greenberg's conjecture for real quadratic fields [J].
Fukuda, T .
MATHEMATICS OF COMPUTATION, 1996, 65 (215) :1339-1348
[6]  
Fukuda T., 2005, Tokyo Journal of Mathematics, V28, P259
[7]   ON THE IWASAWA λ-INVARIANT OF THE CYCLOTOMIC Z2-EXTENSION OF Q(√p) [J].
Fukuda, Takashi ;
Komatsu, Keiichi .
MATHEMATICS OF COMPUTATION, 2009, 78 (267) :1797-1808
[8]  
Gras Georges, 2003, CLASS FIELD THEORY T, DOI DOI 10.1007/978-3-662-11323-3
[9]   IWASAWA INVARIANTS OF TOTALLY REAL NUMBER FIELDS [J].
GREENBERG, R .
AMERICAN JOURNAL OF MATHEMATICS, 1976, 98 (01) :263-284
[10]  
Iwasawa K., 1959, B AM MATH SOC, V65, P183