Automatic detection of the parasite Trypanosoma cruzi in blood smears using a machine learning approach applied to mobile phone images

被引:15
作者
Cafundo Morais, Mauro Cesar [1 ,2 ,3 ]
Silva, Diogo [3 ]
Milagre, Matheus Marques [4 ]
de Oliveira, Maykon Tavares [5 ]
Pereira, Thais [6 ]
Silva, Joao Santana [5 ]
Costa, Luciano da F. [7 ]
Minoprio, Paola [2 ]
Cesar Junior, Roberto Marcondes [8 ]
Gazzinelli, Ricardo [6 ]
de Lana, Marta [4 ,9 ]
Nakaya, Helder, I [1 ,2 ,3 ,10 ]
机构
[1] Hosp Israelita Albert Einstein, Sao Paulo, Brazil
[2] Univ Sao Paulo, Sci Platform Pasteur Univ Sao Paulo SPPU, Sao Paulo, SP, Brazil
[3] Univ Sao Paulo, Sch Pharmaceut Sci, Dept Clin & Toxicol Anal, Sao Paulo, SP, Brazil
[4] Univ Fed Ouro Preto, Dept Anal Clin DEACL, Programa Posgrad Ciencias Farmaceut CiPHARMA, Ouro Preto, MG, Brazil
[5] Univ Fed Minas Gerais, Inst Rene Rachou, Lab Imunopatol, Fundacao Oswaldo Cruz, Belo Horizonte, MG, Brazil
[6] FIOCRUZ SP, Fiocruz Biinst Translat Med Project, Ribeirao Preto, SP, Brazil
[7] Univ Sao Paulo, Sao Carlos Inst Phys DFCM IFSC, Sao Carlos, SP, Brazil
[8] Univ Sao Paulo, Inst Matemat & Estat IME, Sao Paulo, SP, Brazil
[9] Univ Fed Ouro Preto, Nucleo Pesquisas Ciencias Biol NUPEB, Ouro Preto, MG, Brazil
[10] Univ Sao Paulo, Ctr Res Inflammatory Dis CRID, Ribeirao Preto, SP, Brazil
来源
PEERJ | 2022年 / 10卷
基金
巴西圣保罗研究基金会;
关键词
Trypanosoma cruzi; Blood trypomastigote; Parasitemia; Machine learning; SVM; CHAGAS-DISEASE; CLASSIFICATION;
D O I
10.7717/peerj.13470
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chagas disease is a life-threatening illness caused by the parasite Trypanosoma cruzi. The diagnosis of the acute form of the disease is performed by trained microscopists who detect parasites in blood smear samples. Since this method requires a dedicated high resolution camera system attached to the microscope, the diagnostic method is more expensive and often prohibitive for low-income settings. Here, we present a machine learning approach based on a random forest (RF) algorithm for the detection and counting of T. cruzi trypomastigotes in mobile phone images. We analyzed micrographs of blood smear samples that were acquired using a mobile device camera capable of capturing images in a resolution of 12 megapixels. We extracted a set of features that describe morphometric parameters (geometry and curvature), as well as color, and texture measurements of 1,314 parasites. The features were divided into train and test sets (4:1) and classified using the RF algorithm. The values of precision, sensitivity, and area under the receiver operating characteristic (ROC) curve of the proposed method were 87.6%, 90.5%, and 0.942, respectively. Automating image analysis acquired with a mobile device is a viable alternative for reducing costs and gaining efficiency in the use of the optical microscope.
引用
收藏
页数:19
相关论文
共 34 条
  • [1] Recognition of peripheral blood cell images using convolutional neural networks
    Acevedo, Andrea
    Alferez, Santiago
    Merino, Anna
    Puigvi, Laura
    Rodellar, Jose
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 180
  • [2] Predicting Interactions between Virus and Host Proteins Using Repeat Patterns and Composition of Amino Acids
    Alguwaizani, Saud
    Park, Byungkyu
    Zhou, Xiang
    Huang, De-Shuang
    Han, Kyungsook
    [J]. JOURNAL OF HEALTHCARE ENGINEERING, 2018, 2018
  • [3] Ben-Hur A, 2010, METHODS MOL BIOL, V609, P223, DOI 10.1007/978-1-60327-241-4_13
  • [4] Breiman L., 2001, Machine Learning, V45, P5
  • [5] Evidence of meaningful levels of Trypanosoma cruzi in platelet concentrates from seropositive blood donors
    Cancino-Faure, Beatriz
    Fisa, Roser
    Riera, Cristina
    Bula, Ibeth
    Girona-Llobera, Enrique
    Jimenez-Marco, Teresa
    [J]. TRANSFUSION, 2015, 55 (06) : 1249 - 1255
  • [6] Carlier Y, 2015, MEM I OSWALDO CRUZ, V110, P363, DOI [10.1590/0074-02760140410, 10.1590/0074-02760140405]
  • [7] Chagas C., 1909, Mem. Inst. Oswaldo Cruz, V1, P159, DOI [DOI 10.1590/S0074-02761909000200008GT, 10.1590/S0074-02761909000200008, DOI 10.1590/S0074-02761909000200008]
  • [8] Selecting critical features for data classification based on machine learning methods
    Chen, Rung-Ching
    Dewi, Christine
    Huang, Su-Wen
    Caraka, Rezzy Eko
    [J]. JOURNAL OF BIG DATA, 2020, 7 (01)
  • [9] Costa LD, 2009, IMAGE PROCESS SER, P1
  • [10] Efficient graph-based image segmentation
    Felzenszwalb, PF
    Huttenlocher, DP
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 59 (02) : 167 - 181