Optimization-Based Markov Chain Monte Carlo Methods for Nonlinear Hierarchical Statistical Inverse Problems

被引:4
|
作者
Bardsley, Johnathan M. [1 ]
Cui, Tiangang [2 ]
机构
[1] Univ Montana, Dept Math Sci, Missoula, MT 59812 USA
[2] Monash Univ, Sch Math, Clayton, Vic 3800, Australia
基金
澳大利亚研究理事会;
关键词
inverse problems; hierarchical Bayes; Markov chain Monte Carlo; pseudomarginalization; Poisson likelihood; positron emission tomography; RANDOMIZE-THEN-OPTIMIZE; STOCHASTIC NEWTON MCMC; UNCERTAINTY QUANTIFICATION; IMAGE-RECONSTRUCTION; RANDOM-FIELDS; MODELS; APPROXIMATION; ALGORITHMS; LIKELIHOOD; INFERENCE;
D O I
10.1137/20M1318365
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In many hierarchical inverse problems, not only do we want to estimate high- or infinite-dimensional model parameters in the parameter-to-observable maps, but we also have to estimate hyperparameters that represent critical assumptions in the statistical and mathematical modeling processes. As a joint effect of high-dimensionality, nonlinear dependence, and nonconcave structures in the joint posterior distribution over model parameters and hyperparameters, solving inverse problems in the hierarchical Bayesian setting poses a significant computational challenge. In this work, we develop scalable optimization-based Markov chain Monte Carlo (MCMC) methods for solving hierarchical Bayesian inverse problems with nonlinear parameter-to-observable maps and a broader class of hyperparameters. Our algorithmic development is based on the recently developed scalable randomize-then-optimize (RTO) method [J. M. Bardsley et al., SIAM J. Sci. Comput., 42 (2016), pp. A1317-A1347] for exploring the high- or infinite-dimensional parameter space. We first extend the RTO machinery to the Poisson likelihood and discuss the implementation of RTO in the hierarchical setting. Then, by using RTO either as a proposal distribution in a Metropolis-withinGibbs update or as a biasing distribution in the pseudomarginal MCMC [C. Andrieu and G. O. Roberts, Ann. Statist., 37 (2009), pp. 697-725], we present efficient sampling tools for hierarchical Bayesian inversion. In particular, the integration of RTO and the pseudomarginal MCMC has sampling performance robust to model parameter dimensions. Numerical examples in PDE-constrained inverse problems and positron emission tomography are used to demonstrate the performance of our methods.
引用
收藏
页码:29 / 64
页数:36
相关论文
共 50 条
  • [1] Particle Markov chain Monte Carlo methods
    Andrieu, Christophe
    Doucet, Arnaud
    Holenstein, Roman
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 269 - 342
  • [2] Application of Markov Chain Monte Carlo Methods for Uncertainty Quantification in Inverse Transport Problems
    Bledsoe, Keith C.
    Hite, Jason
    Jessee, Matthew A.
    Lefebvre, Jordan P.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2021, 68 (08) : 2210 - 2219
  • [3] A review of Markov Chain Monte Carlo and information theory tools for inverse problems in subsurface flow
    Yustres, Angel
    Asensio, Laura
    Alonso, Juan
    Navarro, Vicente
    COMPUTATIONAL GEOSCIENCES, 2012, 16 (01) : 1 - 20
  • [4] Statistical Robustness of Markov Chain Monte Carlo Accelerators
    Zhang, Xiangyu
    Bashizade, Ramin
    Wang, Yicheng
    Mukherjee, Sayan
    Lebeck, Alvin R.
    ASPLOS XXVI: TWENTY-SIXTH INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, 2021, : 959 - 974
  • [5] A transport-based multifidelity preconditioner for Markov chain Monte Carlo
    Peherstorfer, Benjamin
    Marzouk, Youssef
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (5-6) : 2321 - 2348
  • [6] A review of Markov Chain Monte Carlo and information theory tools for inverse problems in subsurface flow
    Ángel Yustres
    Laura Asensio
    Juan Alonso
    Vicente Navarro
    Computational Geosciences, 2012, 16 : 1 - 20
  • [7] SEQUENTIALLY INTERACTING MARKOV CHAIN MONTE CARLO METHODS
    Brockwell, Anthony
    Del Moral, Pierre
    Doucet, Arnaud
    ANNALS OF STATISTICS, 2010, 38 (06) : 3387 - 3411
  • [8] Hamiltonian Monte Carlo and Borrowing Strength in Hierarchical Inverse Problems
    Nagel, Joseph B.
    Sudret, Bruno
    ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2016, 2 (03):
  • [9] An introduction to Markov chain Monte Carlo methods
    Besag, J
    MATHEMATICAL FOUNDATIONS OF SPEECH AND LANGUAGE PROCESSING, 2004, 138 : 247 - 270
  • [10] MULTILEVEL HIERARCHICAL DECOMPOSITION OF FINITE ELEMENT WHITE NOISE WITH APPLICATION TO MULTILEVEL MARKOV CHAIN MONTE CARLO
    Fairbanks, Hillary R.
    Villa, Umberto
    Vassilevski, Panayot S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05) : S293 - S316