Optimization-Based Markov Chain Monte Carlo Methods for Nonlinear Hierarchical Statistical Inverse Problems

被引:4
作者
Bardsley, Johnathan M. [1 ]
Cui, Tiangang [2 ]
机构
[1] Univ Montana, Dept Math Sci, Missoula, MT 59812 USA
[2] Monash Univ, Sch Math, Clayton, Vic 3800, Australia
基金
澳大利亚研究理事会;
关键词
inverse problems; hierarchical Bayes; Markov chain Monte Carlo; pseudomarginalization; Poisson likelihood; positron emission tomography; RANDOMIZE-THEN-OPTIMIZE; STOCHASTIC NEWTON MCMC; UNCERTAINTY QUANTIFICATION; IMAGE-RECONSTRUCTION; RANDOM-FIELDS; MODELS; APPROXIMATION; ALGORITHMS; LIKELIHOOD; INFERENCE;
D O I
10.1137/20M1318365
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In many hierarchical inverse problems, not only do we want to estimate high- or infinite-dimensional model parameters in the parameter-to-observable maps, but we also have to estimate hyperparameters that represent critical assumptions in the statistical and mathematical modeling processes. As a joint effect of high-dimensionality, nonlinear dependence, and nonconcave structures in the joint posterior distribution over model parameters and hyperparameters, solving inverse problems in the hierarchical Bayesian setting poses a significant computational challenge. In this work, we develop scalable optimization-based Markov chain Monte Carlo (MCMC) methods for solving hierarchical Bayesian inverse problems with nonlinear parameter-to-observable maps and a broader class of hyperparameters. Our algorithmic development is based on the recently developed scalable randomize-then-optimize (RTO) method [J. M. Bardsley et al., SIAM J. Sci. Comput., 42 (2016), pp. A1317-A1347] for exploring the high- or infinite-dimensional parameter space. We first extend the RTO machinery to the Poisson likelihood and discuss the implementation of RTO in the hierarchical setting. Then, by using RTO either as a proposal distribution in a Metropolis-withinGibbs update or as a biasing distribution in the pseudomarginal MCMC [C. Andrieu and G. O. Roberts, Ann. Statist., 37 (2009), pp. 697-725], we present efficient sampling tools for hierarchical Bayesian inversion. In particular, the integration of RTO and the pseudomarginal MCMC has sampling performance robust to model parameter dimensions. Numerical examples in PDE-constrained inverse problems and positron emission tomography are used to demonstrate the performance of our methods.
引用
收藏
页码:29 / 64
页数:36
相关论文
共 61 条
[1]   Analysis of the Gibbs Sampler for Hierarchical Inverse Problems [J].
Agapiou, Sergios ;
Bardsley, Johnathan M. ;
Papaspiliopoulos, Omiros ;
Stuart, Andrew M. .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2014, 2 (01) :511-544
[2]   ESTABLISHING SOME ORDER AMONGST EXACT APPROXIMATIONS OF MCMCS [J].
Andrieu, Christophe ;
Vihola, Matti .
ANNALS OF APPLIED PROBABILITY, 2016, 26 (05) :2661-2696
[3]   THE PSEUDO-MARGINAL APPROACH FOR EFFICIENT MONTE CARLO COMPUTATIONS [J].
Andrieu, Christophe ;
Roberts, Gareth O. .
ANNALS OF STATISTICS, 2009, 37 (02) :697-725
[4]  
[Anonymous], 1994, J. Comput. Graph. Statist.
[5]  
[Anonymous], SIAM J NUMER ANAL
[6]  
[Anonymous], 2008, MONTE CARLO STRATEGI
[7]  
[Anonymous], 2008, THESIS
[8]   Serverless Performance and Optimization Strategies [J].
Bardsley, Daniel ;
Ryan, Larry ;
Howard, John .
2018 IEEE INTERNATIONAL CONFERENCE ON SMART CLOUD (SMARTCLOUD), 2018, :19-26
[9]   SCALABLE OPTIMIZATION-BASED SAMPLING ON FUNCTION SPACE [J].
Bardsley, Johnathan M. ;
Cui, Tiangang ;
Marzouk, Youssef M. ;
Wang, Zheng .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (02) :A1317-A1347
[10]   RANDOMIZE-THEN-OPTIMIZE: A METHOD FOR SAMPLING FROM POSTERIOR DISTRIBUTIONS IN NONLINEAR INVERSE PROBLEMS [J].
Bardsley, Johnathan M. ;
Solonen, Antti ;
Haario, Heikki ;
Laine, Marko .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (04) :A1895-A1910