A Multifractal Formalism for Hewitt-Stromberg Measures

被引:37
作者
Attia, Najmeddine [1 ]
Selmi, Bilel [1 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Dept Math, Anal Probabil & Fractals Lab LR18ES17, Monastir 5000, Tunisia
关键词
Multifractal analysis; Multifractal formalism; Hewitt-Stromberg measures; Hausdorff dimension; Packing dimension; Moran measures; SINGULARITY SPECTRUM; PACKING MEASURES; GIBBS MEASURES; DIMENSION; HAUSDORFF; REGULARITIES; SETS;
D O I
10.1007/s12220-019-00302-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present work, we give a new multifractal formalism for which the classical multifractal formalism does not hold. We precisely introduce and study a multifractal formalism based on the Hewitt-Stromberg measures and that this formalism is completely parallel to Olsen's multifractal formalism which is based on the Hausdorff and packing measures.
引用
收藏
页码:825 / 862
页数:38
相关论文
共 63 条
[1]  
[Anonymous], 2013, Trends in mathematics
[2]  
[Anonymous], FRACTALS PURE MATH C
[3]  
[Anonymous], 2012, Real and Abstract Analysis: A Modern Treatment of the Theory of Functions of a Real Variable
[4]  
Arbeiter M, 1996, MATH NACHR, V181, P5
[5]  
Attia N., FILOMAT
[6]  
Attia N, 2019, COMMUN KOREAN MATH S, V34, P213
[7]   RELATIVE MULTIFRACTAL SPECTRUM [J].
Attia, Najmeddine .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (02) :459-471
[8]   Some density results of relative multifractal analysis [J].
Attia, Najmeddine ;
Selmi, Bilel ;
Souissi, Chouhaid .
CHAOS SOLITONS & FRACTALS, 2017, 103 :1-11
[9]   Continuity of the multifractal spectrum of a random statistically self-similar measure [J].
Barral, J .
JOURNAL OF THEORETICAL PROBABILITY, 2000, 13 (04) :1027-1060
[10]  
Barral J., 2003, Asian J. Math., V7, P149